【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II

简介: 【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

状态压缩 广度优先搜索

LeetCode1494. 并行课程 II

给你一个整数 n 表示某所大学里课程的数目,编号为 1 到 n ,数组 relations 中, relations[i] = [xi, yi] 表示一个先修课的关系,也就是课程 xi 必须在课程 yi 之前上。同时你还有一个整数 k 。

在一个学期中,你 最多 可以同时上 k 门课,前提是这些课的先修课在之前的学期里已经上过了。

请你返回上完所有课最少需要多少个学期。题目保证一定存在一种上完所有课的方式。

示例 1:

输入:n = 4, relations = [[2,1],[3,1],[1,4]], k = 2

输出:3

解释:上图展示了题目输入的图。在第一个学期中,我们可以上课程 2 和课程 3 。然后第二个学期上课程 1 ,第三个学期上课程 4 。

示例 2:

输入:n = 5, relations = [[2,1],[3,1],[4,1],[1,5]], k = 2

输出:4

解释:上图展示了题目输入的图。一个最优方案是:第一学期上课程 2 和 3,第二学期上课程 4 ,第三学期上课程 1 ,第四学期上课程 5 。

示例 3:

输入:n = 11, relations = [], k = 2

输出:6

提示:

1 <= n <= 15

1 <= k <= n

0 <= relations.length <= n * (n-1) / 2

relations[i].length == 2

1 <= xi, yi <= n

xi != yi

所有先修关系都是不同的,也就是说 relations[i] != relations[j] 。

题目输入的图是个有向无环图。

状态压缩

15门课程。枚举最后一次选择(选择1到15门) 和之前的选择(0到15门)。共多少种可能。暴力做法是:230

枚举第一门课 第二门课第三门课 的可能

不包括0,共7种可能。

const int iMaxMask = (1 << 3)-1;

for (int mask = iMaxMask; mask; mask = (mask - 1) & iMaxMask)

{

char sz1[100],sz2[100];

_itoa_s(mask, sz1, 2);

_itoa_s(iMaxMask - mask, sz2, 2);

std::cout << “最后一次选择:\t” << sz1 << " 之前的选择:\t" << sz2 << std::endl;

}

最后一次选择: 111 之前的选择: 0

最后一次选择: 110 之前的选择: 1

最后一次选择: 101 之前的选择: 10

最后一次选择: 100 之前的选择: 11

最后一次选择: 11 之前的选择: 100

最后一次选择: 10 之前的选择: 101

最后一次选择: 1 之前的选择: 110

枚举第一、三、四

不包括0,共7种可能,不需要枚举16种可能。自动忽略了不可能存在的状态2。

const int iMaxMask = 1+4+8;

最后一次选择: 111 之前的选择: 0

最后一次选择: 110 之前的选择: 1

最后一次选择: 101 之前的选择: 10

最后一次选择: 100 之前的选择: 11

最后一次选择: 11 之前的选择: 100

最后一次选择: 10 之前的选择: 101

最后一次选择: 1 之前的选择: 110

枚举iMaxMask [0,2n)

总时间复杂度是:O(3n) 315大约1.4e7。注意剪枝,否则容易超时。

动态规划

动态规划的状态表示

pre记录i学期能够完成的课程,dp记录i+1学期可以完成的课程。vHasDo记录已经完成的状态。状态没必要重复处理,i1<i2,如果某种状态i1学期能处理,那没必要i2学期处理。

空间复杂度:状态数 ,2n

时间复杂度: O(3n)

动态规划的转移方程

当前学期的课程,必须满足三个条件:

一,课程数小于等于k。

二,所有前置课程都已经完成。

三,这些课程没学习过。可以省略,会被淘汰。

预处理:

vPre[i] 表示第i门课需要的前面状态。

vNext[mask] 记录完成mask课程后,能够学习的课程。

动态规划的初始值

pre={0}

动态规划的填表顺序

i从0到大

动态规划的返回值

pre 包括(1<<n)-1时的i。

代码

核心代码

//通过 x &= (x-1)实现
int bitcount(unsigned x) {
  int countx = 0;
  while (x) {
    countx++;
    x &= (x - 1);
  }
  return countx;
}
class Solution {
public:
  int minNumberOfSemesters(int n, vector<vector<int>>& relations, int k) {
    const int iMaskCount = 1 << n;
    vector<int> vPre(n);
    for (const auto& v : relations)
    {
      vPre[v[1] - 1] |= 1 << (v[0] - 1);
    }
    vector<int> vNext(iMaskCount);
    for (int i = 0; i < iMaskCount; i++)
    {
      for (int j = 0; j < n; j++)
      {
        if ((vPre[j] & i) == vPre[j])
        {
          vNext[i] |= (1 << j);
        }
      }
    }
    vector<int> pre = { 0 };
    vector<bool> vHasDo(iMaskCount);
    for (int i = 0; ; i++)
    {
      vector<int> dp;
      for (const int& iPre : pre)
      {
        if (iPre + 1 == iMaskCount)
        {
          return i;
        }
        const int iRemain = (iMaskCount - 1) - iPre;
        const int iCanSel = iRemain& vNext[iPre];
        auto Add = [&](const int& cur)
        {
          const int iNew = cur | iPre;
          if (!vHasDo[iNew])
          {
            dp.emplace_back(iNew);
            vHasDo[iNew] = true;
          }
        };
        if (bitcount((unsigned int)iCanSel) <= k)
        {
          Add(iCanSel);
          continue;
        }
        for (int cur = iCanSel; cur; cur = (cur - 1) & iCanSel)
        {         
          if (bitcount((unsigned int)cur) == k)
          {
            Add(cur);
          }
        }
      }
      pre.swap(dp);
    }
    return -1;
  }
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{ 
  int n, k;
  vector<vector<int>> relations;
  {
    Solution sln;
    n = 4, relations = { {2,1},{3,1},{1,4} }, k = 2;
    auto res = sln.minNumberOfSemesters(n, relations, k);
    Assert(3, res);
  }
  {
    Solution sln;
    n = 5, relations = { {2,1},{3,1},{4,1},{1,5} }, k = 2;
    auto res = sln.minNumberOfSemesters(n, relations, k);
    Assert(4, res);
  }
  {
    Solution sln;
    n = 11, relations = {}, k = 2;
    auto res = sln.minNumberOfSemesters(n, relations, k);
    Assert(6, res);
  }
}

动态规划

剪枝 忽略非法的前者状态。

//通过 x &= (x-1)实现
int bitcount(unsigned x) {
  int countx = 0;
  while (x) {
    countx++;
    x &= (x - 1);
  }
  return countx;
}
template<class ELE,class ELE2>
void MinSelf(ELE* seft, const ELE2& other)
{
  *seft = min(*seft,(ELE) other);
}
template<class ELE>
void MaxSelf(ELE* seft, const ELE& other)
{
  *seft = max(*seft, other);
}
class Solution {
public:
  int minNumberOfSemesters(int n, vector<vector<int>>& relations, int k) {
    const int iMaskCount = 1 << n;    
    vector<int> vPre(n);
    for (const auto& v : relations)
    {
      vPre[v[1] - 1] |= 1 << (v[0] - 1);
    }
    vector<int> vNext(iMaskCount), vLen(iMaskCount);
    for (int i = 0; i < iMaskCount; i++)
    {
      vLen[i] = bitcount((unsigned int)i);
      for (int j = 0; j < n; j++)
      {
        if ((vPre[j] & i) == vPre[j])
        {
          vNext[i] |= (1 << j);
        }
      }
    }
    vector<int> vRet(iMaskCount,100);
    vRet[0] = 0;
    for (int i = 0; i < iMaskCount; i++)
    {   
            if(vRet[i] >= 100 )
            {
                continue;
            }
      const int iNeedStudy = (iMaskCount - 1) ^ i;//未学课程
      const int iCanStudy = iNeedStudy & vNext[i]; //只能学前置课程已学的课程
      if (vLen[iCanStudy] <= k)
      {
        MinSelf(&vRet[i| iCanStudy], vRet[i] + 1);
      }
      for (int j = iCanStudy; j; j= iCanStudy &(j-1))
      {//i是已学课程,j是本学期将学的课程  
        if (bitcount((unsigned )j) != k )
        {
          continue;
        }
        MinSelf(&vRet[i | j], vRet[i] + 1);
      }
    } 
    return vRet.back();
  }
};

2023年2月第一版

class Solution {

public:

int minNumberOfSemesters(int n, vector<vector>& relations, int k) {

m_iN = n;

m_iK = k;

m_iMaskNum = 1 << n;

m_vPreCourse.resize(n);

for (const auto& v : relations)

{

m_vPreCourse[v[1] - 1] |= (1 << (v[0] - 1));

}

m_vMinSemesters.resize(m_iMaskNum, m_iNotMay);

vector pre(1);

m_vMinSemesters[0] = 0;

for (int iSem = 0;; iSem++)

{

vector dp;

for (const auto& pr : pre)

{

if (pr + 1 == m_iMaskNum)

{

return iSem;

}

int iCanStudy = GetCanStudy(pr);

dfs(dp, pr, iCanStudy, iCanStudy, k,-1);

}

pre.swap(dp);

}

return 0;

}

inline int GetCanStudy(int preMask)const

{

int iCanStudy = 0;

for (int n = 0; n < m_iN; n++)

{

if (preMask & (1 << n))

{//之前已经学习

continue;

}

if ((m_vPreCourse[n] & preMask) != m_vPreCourse[n])

{//先行课程没有学习

continue;

}

iCanStudy |= (1 << n);

}

return iCanStudy;

}

void dfs(vector& dp, const int& preMask, const int& iCanStudy, int iRemain, int iLeve,int iPreN)

{

if ((0 == iLeve) || (0 == iRemain))

{

const int iNewMask = preMask |(iCanStudy - iRemain );

if (m_iNotMay != m_vMinSemesters[iNewMask])

{

return;

}

dp.push_back(iNewMask);

m_vMinSemesters[iNewMask] = m_vMinSemesters[preMask] + 1;

return;

}

for (int n = iPreN+1; n < m_iN; n++)

{

if (iRemain & (1 << n))

{

dfs(dp, preMask, iCanStudy, iRemain -(1 << n ), iLeve - 1,n);

}

}

}

vector m_vPreCourse;

vector m_vMinSemesters;

int m_iMaskNum;

int m_iK;

int m_iN;

const int m_iNotMay = 1000 * 1000;

};

2023年2月第二版

class Solution {

public:

int minNumberOfSemesters(int n, vector<vector>& relations, int k) {

m_iN = n;

m_iK = k;

m_iMaskNum = 1 << n;

m_vPreCourse.resize(n);

for (const auto& v : relations)

{

m_vPreCourse[v[1] - 1] |= (1 << (v[0] - 1));

}

m_vMinSemesters.resize(m_iMaskNum, m_iNotMay);

vector pre(1);

m_vMinSemesters[0] = 0;

for (int iSem = 0;; iSem++)

{

vector dp;

for (const auto& pr : pre)

{

if (pr + 1 == m_iMaskNum)

{

return iSem;

}

int iCanStudy = GetCanStudy(pr);

dfs(dp, pr, iCanStudy, iCanStudy, k, iCanStudy);

}

pre.swap(dp);

}

return 0;

}

inline int GetCanStudy(int preMask)const

{

int iCanStudy = 0;

for (int n = 0; n < m_iN; n++)

{

if (preMask & (1 << n))

{//之前已经学习

continue;

}

if ((m_vPreCourse[n] & preMask) != m_vPreCourse[n])

{//先行课程没有学习

continue;

}

iCanStudy |= (1 << n);

}

return iCanStudy;

}

void dfs(vector& dp, const int& preMask, const int& iCanStudy, int iRemain, int iLeve,int iCanSel)

{

if ((0 == iLeve) || (0 == iCanSel))

{

const int iNewMask = preMask |(iCanStudy - iRemain );

if (m_iNotMay != m_vMinSemesters[iNewMask])

{

return;

}

dp.push_back(iNewMask);

m_vMinSemesters[iNewMask] = m_vMinSemesters[preMask] + 1;

return;

}

while (iCanSel)

{

const int iNextCanSel = (iCanSel - 1)& iCanSel;

const int n = iCanSel - iNextCanSel;

iCanSel = iNextCanSel;

dfs(dp, preMask, iCanStudy, iRemain-n, iLeve - 1, iCanSel);

}

}

vector m_vPreCourse;

vector m_vMinSemesters;

int m_iMaskNum;

int m_iK;

int m_iN;

const int m_iNotMay = 1000 * 1000;

};

2023年7月版

using namespace std;

template

void OutToConsoleInner(const vector& vec, const string& strSep = " ")

{

for (int i = 0; i < vec.size(); i++)

{

if (0 != i % 25)

{

std::cout << strSep.c_str();

}

std::cout << setw(3) << setfill(’ ') << vec[i];

if (0 == (i + 1) % 25)

{

std::cout << std::endl;

}

else if (0 == (i + 1) % 5)

{

std::cout << strSep.c_str();

}

}

}

class CConsole

{

public:

template<class T>
static void Out(const vector<T>& vec, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
  OutToConsoleInner(vec, strColSep);
  std::cout << strRowSep.c_str();
}
template<class T>
static void Out(const vector<vector<T>>& matrix, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
  for (int i = 0; i < matrix.size(); i++)
  {
    OutToConsoleInner(matrix[i], strColSep);
    std::cout << strRowSep.c_str();
  }
}
template<class T>
static void Out(const std::map<T, std::vector<int> >& mTopPointToPoints, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
  for (auto kv : mTopPointToPoints)
  {
    std::cout << kv.first << ":";
    OutToConsoleInner(kv.second, strColSep);
    std::cout << strRowSep.c_str();
  }
}
static void Out(const  std::string& t, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
  std::cout << t.c_str() << strColSep.c_str();
}
template<class T  >
static void Out(const T& t, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
  std::cout << t << strColSep.c_str();
}

};

void GenetateSum(vector& sums, const vector& nums)

{

sums.push_back(0);

for (int i = 0; i < nums.size(); i++)

{

sums.push_back(nums[i] + sums[i]);

}

}

//[iBegin,iEnd]之和

long long Total(int iBegin, int iEnd)

{

return (long long)(iBegin + iEnd) * (iEnd - iBegin + 1) / 2;

}

class CLadderhlp

{

public:

CLadderhlp(int ladders)

{

m_uLadderNum = ladders;

}

void AddNeedBick(int iNeedBick)

{

if (0 == m_uLadderNum)

{

return;

}

if (m_ladders.size() < m_uLadderNum)

{

m_ladders.push(iNeedBick);

m_iEaqualBicks += iNeedBick;

return;

}

int iTop = m_ladders.top();

if (iTop >= iNeedBick)

{

return;

}

m_iEaqualBicks -= iTop;

m_iEaqualBicks += iNeedBick;

m_ladders.pop();

m_ladders.push(iNeedBick);

}

std::priority_queue<int, vector, std::greater > m_ladders;

unsigned int m_uLadderNum;

long long m_iEaqualBicks = 0;

};

struct CPeo

{

CPeo(string strName, CPeo* pParent = nullptr)

{

m_strName = strName;

m_pParent = pParent;

}

string m_strName;

vector<CPeo*> m_childs;

CPeo* m_pParent = nullptr;

};

class CNeighborTable

{

public:

void Init(const vector<vector>& edges)

{

}
vector<vector<int>> m_vTable;

};

//通过 x &= (x-1)实现

int bitcount(unsigned x) {

int countx = 0;

while (x) {

countx++;

x &= (x - 1);

}

return countx;

}

int bitcount(unsigned long long x) {

int countx = 0;

while (x) {

countx++;

x &= (x - 1);

}

return countx;

}

class CRange

{

public:

template

CRange(const T& v)

{

m_iBegin = 0;

m_iEnd = v.size();

}

bool In(int iIndex)

{

return (iIndex >= m_iBegin) && (iIndex < m_iEnd);

}

const int End()

{

return m_iEnd;

}

protected:

int m_iBegin;

int m_iEnd;

};

template

class CTrie

{

public:

CTrie() :m_vPChilds(iTypeNum)

{

}
template<class IT>
void Add(IT begin, IT end)
{
  CTrie<iTypeNum, cBegin>* pNode = this;
  for (; begin != end; ++begin)
  {
    pNode = pNode->AddChar(*begin).get();
  }
}
template<class IT>
bool Search(IT begin, IT end)
{
  if (begin == end)
  {
    return true;
  }
  if ('.' == *begin)
  {
    for (auto& ptr : m_vPChilds)
    {
      if (!ptr)
      {
        continue;
      }
      if (ptr->Search(begin + 1, end))
      {
        return true;
      }
    }
  }
  auto ptr = GetChild(*begin);
  if (nullptr == ptr)
  {
    return false;
  }
  return ptr->Search(begin + 1, end);
}

protected:

std::shared_ptr AddChar(char ch)

{

if ((ch < cBegin) || (ch >= cBegin + iTypeNum))

{

return nullptr;

}

const int index = ch - cBegin;

auto ptr = m_vPChilds[index];

if (!ptr)

{

m_vPChilds[index] = std::make_shared<CTrie<iTypeNum, cBegin>>();

}

return m_vPChilds[index];

}

std::shared_ptr GetChild(char ch)const

{

if ((ch < cBegin) || (ch >= cBegin + iTypeNum))

{

return nullptr;

}

return m_vPChilds[ch - cBegin];

}

std::vector<std::shared_ptr> m_vPChilds;

};

class CWords

{

public:

void Add(const string& word)

{

m_strStrs.insert(word);

}

bool Search(const string& word)

{

return Search(m_strStrs.begin(), m_strStrs.end(), 0, word.length(), word);

}

protected:

bool Search(std::set::const_iterator begin, std::set::const_iterator end, int iStrBegin, int iStrEnd, const string& str)

{

int i = iStrBegin;

for (; (i < iStrEnd) && (str[i] != ‘.’); i++);

auto it = std::equal_range(begin, end, str, [&iStrBegin, &i](const string& s, const string& sFind)

{

return s.substr(iStrBegin, i - iStrBegin) < sFind.substr(iStrBegin, i - iStrBegin);

});

if (i == iStrBegin)

{

it.first = begin;

it.second = end;

}

if (it.first == it.second)

{

return false;

}

if (i == iStrEnd)

{

return true;

}

if (i + 1 == iStrEnd)

{

return true;

}

string tmp = str;

for (char ch = ‘a’; ch <= ‘z’; ch++)

{

tmp[i] = ch;

auto ij = std::equal_range(it.first, it.second, tmp, [&ch, &i](const string& s, const string& sFind)

{

return s[i] < sFind[i];

});

if (ij.first == ij.second)

{

continue;

}

if (Search(ij.first, ij.second, i + 1, iStrEnd, str))
    {
      return true;
    }
  }
  return false;
}
std::set<string> m_strStrs;

};

class WordDictionary {

public:

WordDictionary() {

for (int i = 0; i < 26; i++)

{

m_str[i] = std::make_unique();

}

}

void addWord(string word) {
  m_str[word.length()]->Add(word);
}
bool search(string word) {
  return m_str[word.length()]->Search(word);
}
std::unique_ptr<CWords> m_str[26];

};

template

class C1097Int

{

public:

C1097Int(long long llData = 0) :m_iData(llData% MOD)

{

}
C1097Int  operator+(const C1097Int& o)const
{
  return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
  m_iData = ((long long)m_iData + o.m_iData) % MOD;
  return *this;
}
C1097Int& operator-=(const C1097Int& o)
{
  m_iData = (m_iData + MOD - o.m_iData) % MOD;
  return *this;
}
C1097Int  operator-(const C1097Int& o)
{
  return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int  operator*(const C1097Int& o)const
{
  return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{
  m_iData = ((long long)m_iData * o.m_iData) % MOD;
  return *this;
}
bool operator<(const C1097Int& o)const
{
  return m_iData < o.m_iData;
}
C1097Int pow(int n)const
{
  C1097Int iRet = 1, iCur = *this;
  while (n)
  {
    if (n & 1)
    {
      iRet *= iCur;
    }
    iCur *= iCur;
    n >>= 1;
  }
  return iRet;
}
C1097Int PowNegative1()const
{
  return pow(MOD - 2);
}
int ToInt()const
{
  return m_iData;
}

private:

int m_iData = 0;;

};

template

int operator+(int iData, const C1097Int& int1097)

{

int iRet = int1097.operator+(C1097Int(iData)).ToInt();

return iRet;

}

template

int& operator+=(int& iData, const C1097Int& int1097)

{

iData = int1097.operator+(C1097Int(iData)).ToInt();

return iData;

}

template

int operator*(int iData, const C1097Int& int1097)

{

int iRet = int1097.operator*(C1097Int(iData)).ToInt();

return iRet;

}

template

int& operator*=(int& iData, const C1097Int& int1097)

{

iData = int1097.operator*(C1097Int(iData)).ToInt();

return iData;

}

template

void MinSelf(T* seft, const T& other)

{

*seft = min(*seft, other);

}

template

void MaxSelf(T* seft, const T& other)

{

*seft = max(*seft, other);

}

int GetNotRepeateNum(int len, int iHasSel)

{

if (0 == len)

{

return 1;

}

if ((0 == iHasSel) && (1 == len))

{

return 10;

}

int iRet = 1;

if (iHasSel > 0)

{

for (int tmp = 10 - iHasSel; (tmp >= 2) && len; tmp–, len–)

{

iRet *= tmp;

}

}

else

{

iRet *= 9;

len–;

for (int tmp = 9; (tmp >= 2) && len; len–, tmp–)

{

iRet *= tmp;

}

}

return iRet;

}

int GCD(int n1, int n2)

{

int t1 = min(n1, n2);

int t2 = max(n1, n2);

if (0 == t1)

{

return t2;

}

return GCD(t2 % t1, t1);

}

void CreateMaskVector(vector& v, const int* const p, int n)

{

const int iMaxMaskNum = 1 << n;

v.resize(iMaxMaskNum);

for (int i = 0; i < n; i++)

{

v[1 << i] = p[i];

}

for (int mask = 1; mask < iMaxMaskNum; mask++)

{

const int iSubMask = mask & (-mask);

v[mask] = v[iSubMask] + v[mask - iSubMask];

}

}

class CMaxLineTree

{

public:

CMaxLineTree(int iArrSize) :m_iArrSize(iArrSize), m_vData(iArrSize * 4)

{

}
//iIndex 从0开始
void Modify(int iIndex, int iValue)
{
  Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
}
//iNeedQueryLeft iNeedQueryRight 从0开始
int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
{
  return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
}

protected:

int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)

{

if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))

{

return m_vData[iTreeNodeIndex];

}

const int iMid = (iRecordLeft + iRecordRight) / 2;

int iRet = 0;

if (iNeedQueryLeft <= iMid)

{

iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);

}

if (iNeedQueryRight > iMid)

{

iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));

}

return iRet;

}

void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)

{

if (iLeft == iRight)

{

m_vData[iTreeNodeIndex] = max(m_vData[iTreeNodeIndex], iValue);

return;

}

const int iMid = (iLeft + iRight) / 2;

if (iIndex <= iMid)

{

Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);

}

else

{

Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);

}

m_vData[iTreeNodeIndex] = max(m_vData[iTreeNodeIndex * 2], m_vData[iTreeNodeIndex * 2 + 1]);

}

const int m_iArrSize;

std::vector m_vData;

};

class CMaxLineTreeMap

{

public:

CMaxLineTreeMap(int iArrSize) :m_iArrSize(iArrSize)

{

}
//iIndex 从0开始
void Modify(int iIndex, int iValue)
{
  Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
}
//iNeedQueryLeft iNeedQueryRight 从0开始
int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
{
  return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
}

protected:

int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)

{

if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))

{

return m_mData[iTreeNodeIndex];

}

const int iMid = (iRecordLeft + iRecordRight) / 2;

int iRet = 0;

if (iNeedQueryLeft <= iMid)

{

iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);

}

if (iNeedQueryRight > iMid)

{

iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));

}

return iRet;

}

void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)

{

if (iLeft == iRight)

{

m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex], iValue);

return;

}

const int iMid = (iLeft + iRight) / 2;

if (iIndex <= iMid)

{

Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);

}

else

{

Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);

}

m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex * 2], m_mData[iTreeNodeIndex * 2 + 1]);

}

const int m_iArrSize;

std::unordered_map<int, int> m_mData;

};

template

class CSumLineTree

{

public:

CSumLineTree(int iEleSize) :m_iEleSize(iEleSize), m_vArr(m_iEleSize * 4), m_vChildAdd(m_iEleSize * 4)

{

}
void Add(int iLeftIndex, int iRightIndex, int iValue)
{
  Add(1, 1, m_iEleSize, iLeftIndex + 1, iRightIndex + 1, iValue);
}
T Query(int iLeftIndex, int iRightIndex)
{
  return Query(1, 1, m_iEleSize, iLeftIndex + 1, iRightIndex + 1);
}

private:

T Query(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight)

{

if ((iOpeLeft <= iDataLeft) && (iOpeRight >= iDataRight))

{

return m_vArr[iNode];

}

Fresh(iNode, iDataLeft, iDataRight);

const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;

T ret(0);

if (iMid >= iOpeLeft)

{

ret += Query(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight);

}

if (iMid + 1 <= iOpeRight)

{

ret += Query(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight);

}

return ret;

}

/* 暴力解法

void Add(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight, int iValue)

{

m_vArr[iNode] += T(iValue)*(min(iDataRight, iOpeRight) - max(iDataLeft, iOpeLeft)+1);

if (iDataLeft == iDataRight)

{

return;

}

const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;

if (iMid >= iOpeLeft)

{

Add(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight, iValue);

}

if (iMid + 1 <= iOpeRight)

{

Add(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight, iValue);

}

}

*/

void Fresh(int iNode, int iDataLeft, int iDataRight)

{

const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;

if (m_vChildAdd[iNode] != 0)

{

Add(iNode * 2, iDataLeft, iMid, iDataLeft, iMid, m_vChildAdd[iNode]);

Add(iNode * 2 + 1, iMid + 1, iDataRight, iMid + 1, iDataRight, m_vChildAdd[iNode]);

m_vChildAdd[iNode] = 0;

}

}

//懒惰法

void Add(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight, int iValue)

{

m_vArr[iNode] += T(iValue) * (min(iDataRight, iOpeRight) - max(iDataLeft, iOpeLeft) + 1);

if ((iOpeLeft <= iDataLeft) && (iOpeRight >= iDataRight))

{

m_vChildAdd[iNode] += T(iValue);

return;

}

Fresh(iNode, iDataLeft, iDataRight);
  const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
  if (iMid >= iOpeLeft)
  {
    Add(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight, iValue);
  }
  if (iMid + 1 <= iOpeRight)
  {
    Add(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight, iValue);
  }
}
const int m_iEleSize;
vector<T> m_vArr;
vector<int> m_vChildAdd;

};

template

class CTreeArr

{

public:

CTreeArr(int iSize) :m_vData(iSize + 1)

{

}
void Add(int index, T value)
{
  index++;
  while (index < m_vData.size())
  {
    m_vData[index] += value;
    index += index & (-index);
  }
}
T Sum(int index)
{
  index++;
  T ret = 0;
  while (index)
  {
    ret += m_vData[index];
    index -= index & (-index);
  }
  return ret;
}
T Get(int index)
{
  return Sum(index) - Sum(index - 1);
}

private:

vector m_vData;

};

//iCodeNum 必须大于等于可能的字符数

template

class CHashStr {

public:

CHashStr(string s, int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’) {

m_c = s.length();

m_vP.resize(m_c + 1);

m_vP[0] = 1;

m_vHash.resize(m_c + 1);

for (int i = 0; i < m_c; i++)

{

const int P = iCodeBegin + iCodeNum;

m_vHash[i + 1] = m_vHash[i] * P + s[i] - chBegin + iCodeBegin;

m_vP[i + 1] = m_vP[i] * P;

}

}

//包括left right

int GetHash(int left, int right)

{

return (m_vHash[right + 1] - m_vHash[left] * m_vP[right - left + 1]).ToInt();

}

inline int GetHash(int right)

{

return m_vHash[right + 1].ToInt();

}

int GetHashExincludeRight(int left, int right)

{

return (m_vHash[right ] - m_vHash[left] * m_vP[right - left ]).ToInt();

}

inline int GetHashExincludeRight(int right)

{

return m_vHash[right].ToInt();

}

int m_c;

vector<C1097Int> m_vP;

vector<C1097Int> m_vHash;

};

template

class C2HashStr

{

public:

C2HashStr(string s) {

m_pHash1 = std::make_unique<CHashStr<>>(s, 26);

m_pHash2 = std::make_unique < CHashStr>(s, 27, 0);

}

//包括left right

long long GetHash(int left, int right)

{

return (long long)m_pHash1->GetHash(left, right) * (MOD2 + 1) + m_pHash2->GetHash(left, right);

}

long long GetHash(int right)

{

return (long long)m_pHash1->GetHash(right) * (MOD2 + 1) + m_pHash2->GetHash(right);

}

//包括Left,不包括Right

long long GetHashExincludeRight(int left, int right)

{

return (long long)m_pHash1->GetHashExincludeRight(left, right) * (MOD2 + 1) + m_pHash2->GetHashExincludeRight(left, right);

}

long long GetHashExincludeRight(int right)

{

return (long long)m_pHash1->GetHashExincludeRight(right) * (MOD2 + 1) + m_pHash2->GetHashExincludeRight(right);

}

private:

std::unique_ptr<CHashStr<>> m_pHash1;

std::unique_ptr<CHashStr> m_pHash2;

};

template

class CDynaHashStr {

public:

CDynaHashStr(int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’) :m_iUnit(iCodeNum + iCodeBegin), m_iP(1), m_iBegin(iCodeBegin - chBegin)

{

}
inline void push_back(const char& ch)
{
  const int iNum = ch + m_iBegin;
  m_iHash *= m_iUnit;
  m_iHash += iNum;
  m_iP *= m_iUnit;
}
inline void push_front(const char& ch)
{
  const int iNum = ch + m_iBegin;
  m_iHash += m_iP * iNum;
  m_iP *= m_iUnit;
}
inline int GetHash() const
{
  return m_iHash;
}
const int m_iUnit;
const int m_iBegin;
C1097Int<MOD> m_iHash;
C1097Int<MOD> m_iP;

};

template

class C2DynaHashStr {

public:

C2DynaHashStr(int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’)

{

m_pHash1 = new CDynaHashStr<>(iCodeNum, iCodeBegin, chBegin);

m_pHash2 = new CDynaHashStr(iCodeNum, iCodeBegin, chBegin);

}

~C2DynaHashStr()

{

delete m_pHash1;

delete m_pHash2;

}

inline void push_back(const char& ch)

{

m_pHash1->push_back(ch);

m_pHash2->push_back(ch);

}

inline void push_front(const char& ch)

{

m_pHash1->push_front(ch);

m_pHash2->push_front(ch);

}

long long Hash()const

{

return (long long)MOD2 * m_pHash1->m_iHash.ToInt() + m_pHash2->m_iHash.ToInt();

}

bool operator==(const C2DynaHashStr& other) const

{

return (m_pHash1->m_iHash.ToInt() == other.m_pHash1->m_iHash.ToInt()) && (m_pHash2->m_iHash.ToInt() == other.m_pHash2->m_iHash.ToInt());

}

CDynaHashStr<>* m_pHash1;

CDynaHashStr* m_pHash2;

};

namespace NSort

{

template

bool SortVecVec(const vector& v1, const vector& v2)

{

return v1[ArrIndex] < v2[ArrIndex];

};

}

namespace NCmp

{

template

bool Less(const std::pair<Class1, int>& p, Class1 iData)

{

return p.first < iData;

}

template<class Class1>
bool  Greater(const std::pair<Class1, int>& p, Class1 iData)
{
  return p.first > iData;
}
template<class _Ty1, class _Ty2>
class CLessPair
{
public:
  bool operator()(const std::pair<_Ty1, _Ty2>& p1, const std::pair<_Ty1, _Ty2>& p2)const
  {
    return p1.first < p2.first;
  }
};
template<class _Ty1, class _Ty2>
class CGreatePair
{
public:
  bool operator()(const std::pair<_Ty1, _Ty2>& p1, const std::pair<_Ty1, _Ty2>& p2)const
  {
    return p1.first > p2.first;
  }
};

}

class CIndexVector

{

public:

template

CIndexVector(vector& data)

{

for (int i = 0; i < data.size(); i++)

{

m_indexs.emplace_back(i);

}

std::sort(m_indexs.begin(), m_indexs.end(), [data](const int& i1, const int& i2)

{

return data[i1] < data[i2];

});

}

int GetIndex(int index)

{

return m_indexs[index];

}

private:

vector m_indexs;

};

class CMedian

{

public:

void AddNum(int iNum)

{

m_queTopMin.emplace(iNum);

MakeNumValid();

MakeSmallBig();

}

void Remove(int iNum)

{

if (m_queTopMax.size() && (iNum <= m_queTopMax.top()))

{

m_setTopMaxDel.insert(iNum);

}

else

{

m_setTopMinDel.insert(iNum);

}

PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
  PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
  MakeNumValid();
  MakeSmallBig();
}
double Median()
{
  const int iMaxNum = m_queTopMin.size() - m_setTopMinDel.size();
  const int iMinNum = m_queTopMax.size() - m_setTopMaxDel.size();
  if (iMaxNum > iMinNum)
  {
    return m_queTopMin.top();
  }
  return ((double)m_queTopMin.top() + m_queTopMax.top()) / 2.0;
}
template<class T>
void PopIsTopIsDel(T& que, std::unordered_multiset<int>& setTopMaxDel)
{
  while (que.size() && (setTopMaxDel.count(que.top())))
  {
    setTopMaxDel.erase(setTopMaxDel.find(que.top()));
    que.pop();
  }
}
void MakeNumValid()
{
  const int iMaxNum = m_queTopMin.size() - m_setTopMinDel.size();
  const int iMinNum = m_queTopMax.size() - m_setTopMaxDel.size();
  //确保两个队的数量
  if (iMaxNum > iMinNum + 1)
  {
    int tmp = m_queTopMin.top();
    m_queTopMin.pop();
    m_queTopMax.emplace(tmp);
    PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
  }
  if (iMinNum > iMaxNum)
  {
    int tmp = m_queTopMax.top();
    m_queTopMax.pop();
    m_queTopMin.push(tmp);
    PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
  }
}
void MakeSmallBig()
{
  if (m_queTopMin.empty() || m_queTopMax.empty())
  {
    return;
  }
  while (m_queTopMin.top() < m_queTopMax.top())
  {
    const int iOldTopMin = m_queTopMin.top();
    const int iOldTopMax = m_queTopMax.top();
    m_queTopMin.pop();
    m_queTopMax.pop();
    m_queTopMin.emplace(iOldTopMax);
    m_queTopMax.emplace(iOldTopMin);
    PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
    PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
  }
}
std::priority_queue<int> m_queTopMax;
std::priority_queue<int, vector<int>, greater<int>> m_queTopMin;
std::unordered_multiset<int> m_setTopMaxDel, m_setTopMinDel;

};

template

class CDistanceGrid

{

public:

CDistanceGrid(const vector<vector>& grid) :m_grid(grid), m_r(grid.size()), m_c(grid[0].size())

{

}
//单源路径 D 算法 ,时间复杂度:r*c*log(r*c)
inline int Dis(int r1, int c1, int r2, int c2)
{
  vector<vector<int>> vDis(iMaxRow, vector<int>(iMaxCol, INT_MAX));
  auto Add = [&vDis, this](std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>>& queCur, int iDis, int r, int c)
  {
    const int iRowColMask = iMaxCol * r + c;
    if (iDis >= vDis[r][c])
    {
      return;
    }
    queCur.emplace(iDis, iRowColMask);
    vDis[r][c] = iDis;
  };
  auto Move = [&](std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>>& queCur, int iDis, int r, int c)
  {
    if ((r < 0) || (r >= m_r))
    {
      return;
    }
    if ((c < 0) || (c >= m_c))
    {
      return;
    }
    if (m_grid[r][c] < 1)
    {
      return;
    }
    Add(queCur, iDis, r, c);
  };
  std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>> que;
  Add(que, 0, r1, c1);
  while (que.size())
  {
    const int iDis = que.top().first;
    const int iStart = que.top().second;
    que.pop();
    const int r = iStart / iMaxCol;
    const int c = iStart % iMaxCol;
    if ((r == r2) && (c == c2))
    {
      return iDis;
    }
    if (iDis > vDis[r][c])
    {
      continue;
    }
    Move(que, iDis + 1, r + 1, c);
    Move(que, iDis + 1, r - 1, c);
    Move(que, iDis + 1, r, c + 1);
    Move(que, iDis + 1, r, c - 1);
  }
  return -1;
}

private:

virtual bool IsCanMoveStatue(int r, int c)

{

return m_grid[r][c] >= 1;

}

const int m_r;

const int m_c;

const vector<vector>& m_grid;

};

class CBFSGridDist

{

public:

CBFSGridDist(const vector<vector>& bCanVisit, int r, int c) :m_bCanVisit(bCanVisit), m_r(m_bCanVisit.size()), m_c(m_bCanVisit[0].size())

{

m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));

Dist(r, c);

}

bool Vilid(const int r, const int c)

{

if ((r < 0) || (r >= m_r))

{

return false;

}

if ((c < 0) || (c >= m_c))

{

return false;

}

return true;

}

const vector<vector>& Dis()const

{

return m_vDis;

}

const vector<vector>& m_bCanVisit;

private:

//INT_MAX/2 表示无法到达

void Dist(int r, int c)

{

m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));

vector<vector> vHasDo(m_r, vector(m_c));

std::queue<std::pair<int, int>> que;

auto Add = [&](const int& r, const int& c, const int& iDis)

{

if (!Vilid(r, c))

{

return;

}

if (vHasDo[r][c])

{

return;

}

if (!m_bCanVisit[r][c])

{

vHasDo[r][c] = true;

return;

}

if (iDis >= m_vDis[r][c])

{

return;

}

que.emplace(r, c);
    m_vDis[r][c] = iDis;
    vHasDo[r][c] = true;
  };
  Add(r, c, 0);
  while (que.size())
  {
    const int r = que.front().first;
    const int c = que.front().second;
    que.pop();
    const int iDis = m_vDis[r][c];
    Add(r + 1, c, iDis + 1);
    Add(r - 1, c, iDis + 1);
    Add(r, c + 1, iDis + 1);
    Add(r, c - 1, iDis + 1);
  }
}
vector<vector<int>> m_vDis;
const int m_r;
const int m_c;

};

class C2BNumTrieNode

{

public:

C2BNumTrieNode()

{

m_childs[0] = m_childs[1] = nullptr;

}

bool GetNot0Child(bool bFirstRight)

{

auto ptr = m_childs[bFirstRight];

if (ptr && (ptr->m_iNum > 0))

{

return bFirstRight;

}

return !bFirstRight;

}

int m_iNum = 0;

C2BNumTrieNode* m_childs[2];

};

template

class C2BNumTrie

{

public:

C2BNumTrie()

{

m_pRoot = new C2BNumTrieNode();

}

void Add(int iNum)

{

m_setHas.emplace(iNum);

C2BNumTrieNode* p = m_pRoot;

for (int i = iLeveNum - 1; i >= 0; i–)

{

p->m_iNum++;

bool bRight = iNum & (1 << i);

if (nullptr == p->m_childs[bRight])

{

p->m_childs[bRight] = new C2BNumTrieNode();

}

p = p->m_childs[bRight];

}

p->m_iNum++;

}

void Del(int iNum)

{

auto it = m_setHas.find(iNum);

if (m_setHas.end() == it)

{

return;

}

m_setHas.erase(it);

C2BNumTrieNode* p = m_pRoot;

for (int i = iLeveNum - 1; i >= 0; i–)

{

p->m_iNum–;

bool bRight = iNum & (1 << i);

p = p->m_childs[bRight];

}

p->m_iNum–;

}

int MaxXor(int iNum)

{

C2BNumTrieNode* p = m_pRoot;

int iRet = 0;

for (int i = iLeveNum - 1; i >= 0; i–)

{

bool bRight = !(iNum & (1 << i));

bool bSel = p->GetNot0Child(bRight);

p = p->m_childs[bSel];

if (bSel == bRight)

{

iRet |= (1 << i);

}

}

return iRet;

}

C2BNumTrieNode* m_pRoot;

std::unordered_multiset m_setHas;

};

struct SValueItem

{

SValueItem()

{

}
SValueItem(int iValue)
{
  m_iCoefficient = iValue;
}
SValueItem operator*(const SValueItem& o)const
{
  SValueItem ret(m_iCoefficient * o.m_iCoefficient);
  int i = 0, j = 0;
  while ((i < m_vVars.size()) && (j < o.m_vVars.size()))
  {
    if (m_vVars[i] < o.m_vVars[j])
    {
      ret.m_vVars.emplace_back(m_vVars[i]);
      i++;
    }
    else
    {
      ret.m_vVars.emplace_back(o.m_vVars[j]);
      j++;
    }
  }
  ret.m_vVars.insert(ret.m_vVars.end(), m_vVars.begin() + i, m_vVars.end());
  ret.m_vVars.insert(ret.m_vVars.end(), o.m_vVars.begin() + j, o.m_vVars.end());
  return ret;
}
bool operator<(const SValueItem& o)const
{
  if (m_vVars.size() == o.m_vVars.size())
  {
    return m_vVars < o.m_vVars;
  }
  return m_vVars.size() > o.m_vVars.size();
}
vector<std::string> m_vVars;
int m_iCoefficient = 1;//系数、倍率
std::string ToString()const
{
  std::ostringstream os;
  os << m_iCoefficient;
  for (const auto& s : m_vVars)
  {
    os << "*" << s;
  }
  return os.str();
}

};

struct SValue

{

SValue()

{

}
SValue(int iValue)
{
  SValueItem item;
  item.m_iCoefficient = iValue;
  m_items.emplace(item);
}
SValue(std::string strName)
{
  SValueItem item;
  item.m_vVars.emplace_back(strName);
  m_items.emplace(item);
}
SValue operator-(const SValue& o)const
{
  SValue ret;
  ret.m_items = m_items;
  for (auto it : o.m_items)
  {
    ret -= it;
  }
  return ret;
}
SValue operator+(const SValue& o)const
{
  SValue ret;
  ret.m_items = m_items;
  for (auto it : o.m_items)
  {
    ret += it;
  }
  return ret;
}
SValue operator*(const SValue& o)const
{
  SValue ret;
  for (const auto it : m_items)
  {
    for (const auto ij : o.m_items)
    {
      ret += it * ij;
    }
  }
  return ret;
}
SValue& operator+=(const SValueItem& item)
{
  auto it = m_items.find(item);
  if (m_items.end() == it)
  {
    m_items.emplace(item);
  }
  else
  {
    auto tmp = *it;
    tmp.m_iCoefficient += item.m_iCoefficient;
    m_items.erase(it);
    m_items.emplace(tmp);
  }
  return *this;
}
SValue& operator-=(const SValueItem& item)
{
  auto it = m_items.find(item);
  if (m_items.end() == it)
  {
    auto tmp = item;
    tmp.m_iCoefficient *= -1;
    m_items.emplace(tmp);
  }
  else
  {
    auto tmp = *it;
    tmp.m_iCoefficient -= item.m_iCoefficient;
    m_items.erase(it);
    m_items.emplace(tmp);
  }
  return *this;
}
vector<std::string> ToStrings()const
{
  vector<std::string> vRet;
  for (const auto& item : m_items)
  {
    if (0 == item.m_iCoefficient)
    {
      continue;
    }
    vRet.emplace_back(item.ToString());
  }
  return vRet;
}
std::set<SValueItem> m_items;

};

class CDelIndexs

{

public:

CDelIndexs()

{

}
CDelIndexs(int iSize)
{
  Init(iSize);
}
void Init(int iSize)
{
  m_bDels.assign(iSize, false);
  m_vNext.resize(iSize);
  for (int i = 0; i < iSize; i++)
  {
    m_vNext[i] = i + 1;
  }
}
void Del(int index)
{
  if ((index < 0) || (index >= m_vNext.size()))
  {
    return;
  }
  if (m_bDels[index])
  {
    return;
  }
  m_bDels[index] = true;
}
void SetCur(int index)
{
  if (index < 0)
  {
    m_iCur = m_vNext.size();
  }
  else
  {
    m_iCur = FreshCur(index);
  }
}
int NextIndex()
{
  if (m_iCur >= m_vNext.size())
  {
    return -1;
  }
  auto ret = m_iCur;
  SetCur(m_vNext[m_iCur]);
  return ret;
}

private:

int FreshCur(int index)

{

if (index >= m_vNext.size())

{

return m_vNext.size();

}

if (!m_bDels[index])

{

return index;

}

return m_vNext[index] = FreshCur(m_vNext[index]);
}
int m_iCur = 0;
vector<bool> m_bDels;
vector<int> m_vNext;

};

class CUnionFind

{

public:

CUnionFind(int iSize) :m_vNodeToRegion(iSize)

{

for (int i = 0; i < iSize; i++)

{

m_vNodeToRegion[i] = i;

}

m_iConnetRegionCount = iSize;

}

int GetConnectRegionIndex(int iNode)

{

int& iConnectNO = m_vNodeToRegion[iNode];

if (iNode == iConnectNO)

{

return iNode;

}

return iConnectNO = GetConnectRegionIndex(iConnectNO);

}

void Union(int iNode1, int iNode2)

{

const int iConnectNO1 = GetConnectRegionIndex(iNode1);

const int iConnectNO2 = GetConnectRegionIndex(iNode2);

if (iConnectNO1 == iConnectNO2)

{

return;

}

m_iConnetRegionCount–;

if (iConnectNO1 > iConnectNO2)

{

UnionConnect(iConnectNO1, iConnectNO2);

}

else

{

UnionConnect(iConnectNO2, iConnectNO1);

}

}

bool IsConnect(int iNode1, int iNode2)
{
  return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
}
int GetConnetRegionCount()const
{
  return m_iConnetRegionCount;
}
vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
{
  const int iNodeSize = m_vNodeToRegion.size();
  vector<int> vRet(iNodeSize);
  for (int i = 0; i < iNodeSize; i++)
  {
    vRet[GetConnectRegionIndex(i)]++;
  }
  return vRet;
}

private:

void UnionConnect(int iFrom, int iTo)

{

m_vNodeToRegion[iFrom] = iTo;

}

vector m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引

int m_iConnetRegionCount;

};

class CUnionFindMST

{

public:

CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize)

{

}
void AddEdge(const int iNode1, const int iNode2, int iWeight)
{
  if (m_uf.IsConnect(iNode1, iNode2))
  {
    return;
  }
  m_iMST += iWeight;
  m_uf.Union(iNode1, iNode2);
}
void AddEdge(const vector<int>& v)
{
  AddEdge(v[0], v[1], v[2]);
}
int MST()
{
  if (m_uf.GetConnetRegionCount() > 1)
  {
    return -1;
  }
  return m_iMST;
}

private:

int m_iMST = 0;

CUnionFind m_uf;

};

class CNearestMST

{

public:

CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize)

{

}
void Init(const vector<vector<int>>& edges)
{
  for (const auto& v : edges)
  {
    Add(v);
  }
}
void Add(const vector<int>& v)
{
  m_vNeiTable[v[0]].emplace_back(v[1], v[2]);
  m_vNeiTable[v[1]].emplace_back(v[0], v[2]);
}
int MST(int start)
{
  int next = start;
  while ((next = AddNode(next)) >= 0);
  return m_iMST;
}
int MST(int iNode1, int iNode2, int iWeight)
{
  m_bDo[iNode1] = true;
  for (const auto& it : m_vNeiTable[iNode1])
  {
    if (m_bDo[it.first])
    {
      continue;
    }
    m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
  }
  m_iMST = iWeight;
  int next = iNode2;
  while ((next = AddNode(next)) >= 0);
  return m_iMST;
}

private:

int AddNode(int iCur)

{

m_bDo[iCur] = true;

for (const auto& it : m_vNeiTable[iCur])

{

if (m_bDo[it.first])

{

continue;

}

m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);

}

int iMinIndex = -1;
  for (int i = 0; i < m_vDis.size(); i++)
  {
    if (m_bDo[i])
    {
      continue;
    }
    if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex]))
    {
      iMinIndex = i;
    }
  }
  if (-1 != iMinIndex)
  {
    if (INT_MAX == m_vDis[iMinIndex])
    {
      m_iMST = -1;
      return -1;
    }
    m_iMST += m_vDis[iMinIndex];
  }
  return iMinIndex;
}
vector<bool> m_bDo;
vector<long long> m_vDis;
vector < vector<std::pair<int, int>>> m_vNeiTable;
long long m_iMST = 0;

};

typedef pair<long long, int> PAIRLLI;

class CDis

{

public:

static void Dis(vector& vDis, int start, const vector<vector<pair<int, int>>>& vNeiB)

{

std::priority_queue<PAIRLLI, vector, greater> minHeap;

minHeap.emplace(0, start);

while (minHeap.size())

{

const long long llDist = minHeap.top().first;

const int iCur = minHeap.top().second;

minHeap.pop();

if (-1 != vDis[iCur])

{

continue;

}

vDis[iCur] = llDist;

for (const auto& it : vNeiB[iCur])

{

minHeap.emplace(llDist + it.second, it.first);

}

}

}

};

class CNearestDis

{

public:

CNearestDis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre)

{

}
void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
{
  m_vDis.assign(m_iSize, -1);
  m_vPre.assign(m_iSize, -1);
  vector<bool> vDo(m_iSize);//点是否已处理
  auto AddNode = [&](int iNode)
  {
    //const int iPreNode = m_vPre[iNode];
    long long llPreDis = m_vDis[iNode];
    vDo[iNode] = true;
    for (const auto& it : vNeiB[iNode])
    {
      if (vDo[it.first])
      {
        continue;
      }
      if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first]))
      {
        m_vDis[it.first] = it.second + llPreDis;
        m_vPre[it.first] = iNode;
      }
    }
    long long llMinDis = LLONG_MAX;
    int iMinIndex = -1;
    for (int i = 0; i < m_vDis.size(); i++)
    {
      if (vDo[i])
      {
        continue;
      }
      if (-1 == m_vDis[i])
      {
        continue;
      }
      if (m_vDis[i] < llMinDis)
      {
        iMinIndex = i;
        llMinDis = m_vDis[i];
      }
    }
    return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;
  };
  int next = start;
  m_vDis[start] = 0;
  while (-1 != (next = AddNode(next)));
}
void Cal(const int start, vector<vector<int>>& edges)
{
  vector<vector<pair<int, int>>> vNeiB(m_iSize);
  for (int i = 0; i < edges.size(); i++)
  {
    const auto& v = edges[i];
    vNeiB[v[0]].emplace_back(v[1], v[2]);
    vNeiB[v[1]].emplace_back(v[0], v[2]);
  }
  Cal(start, vNeiB);
}
const vector<long long>& DIS;
const vector<int>& PRE;

private:

const int m_iSize;

vector m_vDis;//各点到起点的最短距离

vector m_vPre;//最短路径的前一点

};

class CNeiBo2

{

public:

CNeiBo2(int n, vector<vector>& edges, bool bDirect)

{

m_vNeiB.resize(n);

for (const auto& v : edges)

{

m_vNeiB[v[0]].emplace_back(v[1]);

if (!bDirect)

{

m_vNeiB[v[1]].emplace_back(v[0]);

}

}

}

vector<vector> m_vNeiB;

};

struct SDecimal

{

SDecimal(int iNum = 0, int iDeno = 1)

{

m_iNum = iNum;

m_iDeno = iDeno;

int iGCD = GCD(abs(m_iNum), abs(m_iDeno));

m_iNum /= iGCD;

m_iDeno /= iGCD;

if (m_iDeno < 0)

{

m_iDeno = -m_iDeno;

m_iNum = -m_iNum;

}

}

SDecimal operator*(const SDecimal& o)const

{

return SDecimal(m_iNum * o.m_iNum, m_iDeno * o.m_iDeno);

}

SDecimal operator/(const SDecimal& o)const

{

return SDecimal(m_iNum * o.m_iDeno, m_iDeno * o.m_iNum);

}

SDecimal operator+(const SDecimal& o)const

{

const int iGCD = GCD(m_iDeno, o.m_iDeno);

const int iDeno = m_iDeno * o.m_iDeno / iGCD;

return SDecimal(m_iNum * (iDeno / m_iDeno) + o.m_iNum * (iDeno / o.m_iDeno), iDeno);

}

SDecimal operator-(const SDecimal& o)const

{

const int iGCD = GCD(m_iDeno, o.m_iDeno);

const int iDeno = m_iDeno * o.m_iDeno / iGCD;

return SDecimal(m_iNum * (iDeno / m_iDeno) - o.m_iNum * (iDeno / o.m_iDeno), iDeno);

}

bool operator==(const SDecimal& o)const

{

return (m_iNum == o.m_iNum) && (m_iDeno == o.m_iDeno);

}

bool operator<(const SDecimal& o)const

{

auto tmp = *this - o;

return tmp.m_iNum < 0;

}

int m_iNum = 0;//分子

int m_iDeno = 1;//分母

};

struct point {

double x, y;

point(double i, double j) :x(i), y(j) {}

};

//算两点距离

double dist(double x1, double y1, double x2, double y2) {

return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));

}

//计算圆心

point CircleCenter(point& a, point& b, int r) {

//算中点

point mid((a.x + b.x) / 2.0, (a.y + b.y) / 2.0);

//AB距离的一半

double d = dist(a.x, a.y, mid.x, mid.y);

//计算h

double h = sqrt(r * r - d * d);

//计算垂线

point ba(b.x - a.x, b.y - a.y);

point hd(-ba.y, ba.x);

double len = sqrt(hd.x * hd.x + hd.y * hd.y);

hd.x /= len, hd.y /= len;

hd.x *= h, hd.y *= h;

return point(hd.x + mid.x, hd.y + mid.y);

}

class C01LineTree

{

public:

C01LineTree(const vector& nums) :m_iEleSize(nums.size())

{

m_arr.resize(m_iEleSize * 4);

Init(nums, 1, 1, m_iEleSize);

m_vNeedFreshChilds.assign(m_iEleSize * 4, false);

}

void Rotato(int iLeftZeroIndex, int iRightZeroIndex)

{

int iRotatoLeft = iLeftZeroIndex + 1;

int iRotatoRight = iRightZeroIndex + 1;

Rotato(1, 1, m_iEleSize, iRotatoLeft, iRotatoRight);

}

int Query()

{

return m_arr[1];

}

private:

void Rotato(int iSaveIndex, int iDataBegin, int iDataEnd, int iRotatoLeft, int iRotatoRight)

{

if ((iRotatoLeft <= iDataBegin) && (iRotatoRight >= iDataEnd))

{//整个范围需要更新

RotatoSelf(iSaveIndex, iDataBegin, iDataEnd);

return;

}

int iMid = iDataBegin + (iDataEnd - iDataBegin) / 2;

if (m_vNeedFreshChilds[iSaveIndex])

{

RotatoSelf(iSaveIndex * 2, iDataBegin, iMid);

RotatoSelf(iSaveIndex * 2 + 1, iMid + 1, iDataEnd);

m_vNeedFreshChilds[iSaveIndex] = false;

}

if (iMid >= iRotatoLeft)

{

Rotato(iSaveIndex * 2, iDataBegin, iMid, iRotatoLeft, iRotatoRight);

}

if (iMid + 1 <= iRotatoRight)

{

Rotato(iSaveIndex * 2 + 1, iMid + 1, iDataEnd, iRotatoLeft, iRotatoRight);

}

m_arr[iSaveIndex] = m_arr[iSaveIndex * 2] + m_arr[iSaveIndex * 2 + 1];

}

void RotatoSelf(int iSaveIndex, int iDataBegin, int iDataEnd)

{

//总数量 - 翻转后0(翻转前1)的数量

m_arr[iSaveIndex] = (iDataEnd - iDataBegin + 1) - m_arr[iSaveIndex];

//懒惰法,标记本节点的子孙节点没更新

m_vNeedFreshChilds[iSaveIndex] = !m_vNeedFreshChilds[iSaveIndex];

}

void Init(const vector& nums, int iSaveIndex, int iDataBegin, int iDataEnd)

{

if (iDataBegin == iDataEnd)

{

m_arr[iSaveIndex] = nums[iDataBegin - 1];

return;

}

int iMid = iDataBegin + (iDataEnd - iDataBegin) / 2;

Init(nums, iSaveIndex * 2, iDataBegin, iMid);

Init(nums, iSaveIndex * 2 + 1, iMid + 1, iDataEnd);

m_arr[iSaveIndex] = m_arr[iSaveIndex * 2] + m_arr[iSaveIndex * 2 + 1];

}

const int m_iEleSize;

vector m_arr;

vector m_vNeedFreshChilds;

};

/*

struct TreeNode {

int val;

TreeNode *left;

TreeNode *right;

TreeNode(int x) : val(x), left(NULL), right(NULL) {}

TreeNode(int x, int iLeft) : val(x), left(new TreeNode(iLeft)), right(nullptr) {}

TreeNode(int x, int iLeft, int iRghit) : val(x), left(new TreeNode(iLeft)), right(new TreeNode(iRghit)) {}

};

namespace NTree

{

TreeNode* Init(const vector& nums, int iNull = 10000)

{

if (0 == nums.size())

{

return nullptr;

}

vector<TreeNode*> ptrs(nums.size() + 1), ptrParent(1);

for (int i = 0; i < nums.size(); i++)

{

if (iNull == nums[i])

{

continue;

}

const int iNO = i + 1;

ptrs[iNO] = new TreeNode(nums[i]);

ptrParent.emplace_back(ptrs[iNO]);

if (1 == iNO)

{

continue;

}

if (iNO & 1)

{//奇数是右支

ptrParent[iNO / 2]->right = ptrs[iNO];

}

else

{

ptrParent[iNO / 2]->left = ptrs[iNO];

}

}

return ptrs[1];

}

}

*/

class Solution {

public:

int minNumberOfSemesters(int n, vector<vector>& relations, int k) {

m_iMaskNum = 1 << n;

vector dp(m_iMaskNum,1000*1000),vPre(m_iMaskNum);

for (const auto& v : relations)

{

vPre[1 << (v[1] - 1)] |= (1 << (v[0] - 1));

}

dp[0] = 0;

for (int i = 0; i < m_iMaskNum; i++)

{

vPre[i] = vPre[i & (-i)] | vPre[i & (i - 1)];

if ((i | vPre[i]) != i)

{

continue;//非发课程:前置课程没学

}

unsigned int uCanStudy = vPre[i] ^ i;

if (bitcount(uCanStudy) <= k)

{

dp[i ] = min(dp[i ], dp[i- uCanStudy] + 1);

continue;

}

for (unsigned int uStudy = uCanStudy; uStudy; uStudy = uCanStudy & (uStudy - 1))

{

if (bitcount(uStudy) <= k)

{

dp[i] = min(dp[i ], dp[i - uStudy] + 1);

}

}

}

return dp.back();

}

int m_iMaskNum;

};

.


相关文章
|
7月前
|
人工智能 算法 Java
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-7 算法训练 逆序对 平衡二叉树
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-7 算法训练 逆序对 平衡二叉树
60 0
|
存储 人工智能 算法
【算法分析与设计】动态规划(下)(一)
【算法分析与设计】动态规划(下)
|
7月前
|
算法 C++
c++算法学习笔记 (12) 区间合并
c++算法学习笔记 (12) 区间合并
|
7月前
|
存储
【错题集-编程题】合唱团(动态规划 - 线性 dp)
【错题集-编程题】合唱团(动态规划 - 线性 dp)
|
算法
基础算法(贪心 合并 位运算)
基础算法(贪心 合并 位运算)
64 0
|
7月前
|
Java C++ Python
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-456 求链表各节点的平均值(C++解法)
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-456 求链表各节点的平均值(C++解法)
57 0
|
7月前
|
算法 Java C语言
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-570 倍减序列
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-570 倍减序列
97 0
|
算法 搜索推荐
分治法实现合并排序(归并排序),理解分治算法思想,实现分治算法的完美例子合并排序(含码源与解析)
分治法实现合并排序(归并排序),理解分治算法思想,实现分治算法的完美例子合并排序(含码源与解析)
207 0
|
7月前
【每日一题Day239】LC1494并行课程 II | 状态压缩 dp 位运算 子集
【每日一题Day239】LC1494并行课程 II | 状态压缩 dp 位运算 子集
48 0
|
消息中间件 人工智能 算法
【算法分析与设计】动态规划(下)(二)
【算法分析与设计】动态规划(下)

热门文章

最新文章