Grafana 系列文章(九):开源云原生日志解决方案 Loki 简介

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
可观测监控 Prometheus 版,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: Grafana 系列文章(九):开源云原生日志解决方案 Loki 简介

简介

Grafana Labs 简介

Grafana 是用于时序数据的事实上的仪表盘解决方案。它支持近百个数据源。

Grafana Labs 想从一个仪表盘解决方案转变成一个可观察性 (observability) 平台,成为你需要对系统进行调试时的首选之地。

完整的可观察性

可观察性。关于这意味着什么,有很多的定义。可观察性就是对你的系统以及它们的行为和表现的可见性。典型的是这种模式,即可观察性可以分成三个部分(或支柱):指标 (Metrics)、日志 (Logs) 和跟踪 (Traces);每个部分都相互补充,帮助你快速找出问题所在。

下面是在 Grafana Labs 博客和演讲中反复出现的一张图:

今天的现实:不同的系统,不同的数据

Slack 向我发出警告,说有问题,我就打开 Grafana 上服务的相关仪表盘。如果我发现某个面板或图表有异常,我会在 Prometheus 的用户界面中打开查询,进行更深入的研究。例如,如果我发现其中一个服务抛出了 500 个错误,我会尝试找出是否是某个特定的处理程序 / 路由抛出了这个错误,或者是否所有的实例都抛出了这个错误,等等。

接下来,一旦我有了一个模糊的心理模型,知道什么地方出了问题,我就会看一下日志(比如在 splunk 上)。在 Loki 之前,我习惯于使用 kubectl 来获取相关的日志,看看错误是什么,以及我是否可以做些什么。这对错误来说很有效,但有时我会因为高延迟而放弃。之后,我从 traces (比如 AppD) 中得到更多的信息,关于什么是慢的,哪个方法 / 操作 / 功能是慢的。或者使用 Jaeger 来获得追踪信息。

虽然它们并不总是直接告诉我哪里出了问题,但它们通常让我足够近距离地查看代码并找出哪里出了问题。然后,我可以扩展服务(如果服务超载)或部署修复。

Loki 项目背景

Prometheus 工作得很好,Jaeger 也渐入佳境,而 kubectl 也很不错。标签 (label) 模型很强大,足以让我找到出错服务的根源。如果我发现 ingester 服务在出错,我会做:kubectl --namespace prod logs -l name=ingester | grep XXX,以获得相关的日志,并通过它们进行 grep。

如果我发现某个特定的实例出错了,或者我想跟踪某个服务的日志,我必须使用单独的 pod 来跟踪,因为 kubectl 不允许你根据标签选择器来跟踪。这并不理想,但对于大多数的使用情况来说是可行的。

只要 pod 没有崩溃或者没有被替换,这就可以了。如果 pod 或节点被终止了,日志就会永远丢失。另外,kubectl 只存储最近的日志,所以当我们想要前一天或更早的日志时,我们是盲目的。此外,不得不从 Grafana 跳到 CLI 再跳回来的做法并不理想。我们需要一个能减少上下文切换的解决方案,而我们探索的许多解决方案都非常昂贵,或者不能很好地扩展。

这是意料之中的事,因为它们比 select + grep 做得更多,而这正是我们所需要的。在看了现有的解决方案后,Grafana Labs 决定建立自己的。

Loki

由于对任何开源的解决方案都不满意,Grafana Labs 开始与人交谈,发现很多人都有同样的问题。事实上,Grafana Labs 已经意识到,即使在今天,很多开发人员仍然在 SSH 和 grep/tail 机器上的日志。他们所使用的解决方案要么太贵,要么不够稳定。事实上,人们被要求减少日志,Grafana Labs 认为这是一种反模式的日志。Grafana Labs 认为可以建立一些 Grafana Labs 内部和更广泛的开源社区可以使用的东西。Grafana Labs 有一个主要目标:

  • 保持简单。只支持 grep!

这条来自 @alicegoldfuss 的推文并不是支持 Loki,只是为了说明 Loki 试图解决的问题

Grafana Labs 还瞄准了其他目标:

  • 日志应该是便宜的。不应要求任何人少记录日志。
  • 易于操作和扩展
  • 指标 (Metrics)、日志 (Logs)(以及后来的追踪 (traces))需要一起工作

最后一点很重要。Grafana Labs 已经从 Prometheus 收集了指标的元数据,所以想利用这些元数据进行日志关联。例如,Prometheus 用 namespace、service name、实例 IP 等来标记每个指标。当收到警报时,使用元数据来找出寻找日志的位置。如果设法用同样的元数据来标记日志,我们就可以在度量和日志之间无缝切换。你可以在 这里 看到 Grafana Labs 写的内部设计文档。下面是 Loki 的演示视频链接:

📺️Loki 演示视频

架构

根据 Grafana Labs 建立和运行 Cortex 的经验–作为服务运行的 Prometheus 的水平可扩展的分布式版本–想出了以下架构:

Loki 架构

指标和日志之间的元数据匹配对我们来说至关重要,Grafana Labs 最初决定只针对 Kubernetes。想法是在每个节点上运行一个日志收集代理,用它来收集日志,与 kubernetes 的 API 对话,为日志找出正确的元数据,并将它们发送到一个中央服务,可以用它来显示在 Grafana 内收集的日志。

该代理支持与 Prometheus 相同的配置(relabelling rules),以确保元数据的匹配。我们称这个代理为 promtail。

深入 Loki —— 可扩展的日志收集引擎:

Loki 内部架构

写入路径和读取路径(查询)是相互脱钩的,分开说明:

Loki 写入路径

Distributor(分发器)

一旦 promtail 收集并发送日志到 Loki,Distributor 是第一个接收日志的组件。现在,Loki 可能每秒收到数百万条写,我们不想在它们进来时就把它们写到数据库中。那会搞宕任何数据库。需要在数据进入时对其进行批处理和压缩。

Grafana Labs 通过构建压缩的数据块 (chunks),通过 gzip 压缩日志来实现这一点。ingester(采集器) 组件是一个有状态组件,负责构建块,然后再刷新块。Loki 有多个 ingester,属于每个流的日志应该总是在同一个 ingester 中结束,因为所有相关条目都在同一个块中结束。通过构建一个 ingester 环 (ring) 并使用一致性哈希来做到这一点。当有条目进入时,分 Distributor 对日志的标签进行哈希处理,然后根据哈希值查找将条目发送到哪个 ingester。

Loki Distributor 组件

此外,为了实现冗余和弹性,Loki 将其复制了 n 次(默认为 3 次)。

Ingester(采集器)

现在,Ingester 将接收条目并开始构建块。

Loki Ingester 构建 chunks

这基本上是对日志进行 gzip 处理并追加。一旦块 " 填满 " 了,我们就把它刷到数据库中。我们为块(ObjectStorage)和索引使用不同的数据库,因为它们存储的数据类型是不同的。

Loki Ingester 构建好 chunks, 将 index 刷到索引库,将 chunks 刷到 chunks 库

刷完一个块后,Ingester 会创建一个新的空块,并将新条目添加到该块中。

Querier(查询器)

读取路径非常简单,由 Querier 来完成大部分繁重的工作。给定一个时间范围和标签选择器,它查看索引以找出匹配的块,并通过它们进行搜索,给你结果。它还与 ingesters 对话,以获得尚未被刷到库中的最新数据。

请注意,在 2019 年版本中,对于每个查询,一个 Ingester 为你搜索所有相关的日志。Grafana Labs 已经在 Cortex 中使用前端实现了查询并行化,同样的方法可以扩展到 Loki,以提供分布式的 grep,这将使大型查询变得足够迅速。

Loki Querier 组件

可伸缩性

  1. Loki 把块的数据放到对象存储中,这样就可以扩展了。
  2. Loki 把索引放到 Cassandra/Bigtable/DynamoDB 或 Loki 内置的 index db 中,这也是可以扩展的。
  3. Distributors 和 Queriers 是无状态组件,可以横向扩展。

说到 ingester,它是一个有状态的组件,但 Loki 已经将完整的分片和重新分片的生命周期纳入其中。当 rollout 工作完成后,或者当 ingester 被扩大或缩小时,环形拓扑结构会发生变化,ingester 会重新分配它们的块,以匹配新的拓扑结构。这主要是取自 Cortex 的代码,它已经在生产中运行了 5 年多。

总结

Loki: like Prometheus, but for logs.

Loki 是一个水平可扩展、高可用、多租户的日志聚合系统,其灵感来自于 Prometheus。它被设计成非常具有成本效益和易于操作。它不对日志的内容进行索引,而是为每个日志流提供一组标签。

相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
相关文章
|
15天前
|
存储 前端开发 数据可视化
Grafana Loki,轻量级日志系统
本文介绍了基于Grafana、Loki和Alloy构建的轻量级日志系统。Loki是一个由Grafana Labs开发的日志聚合系统,具备高可用性和多租户支持,专注于日志而非指标,通过标签索引而非内容索引实现高效存储。Alloy则是用于收集和转发日志至Loki的强大工具。文章详细描述了系统的架构、组件及其工作流程,并提供了快速搭建指南,包括准备步骤、部署命令及验证方法。此外,还展示了如何使用Grafana查看日志,以及一些基本的LogQL查询示例。最后,作者探讨了Loki架构的独特之处,提出了“巨型单体模块化”的概念,即一个应用既可单体部署也可分布式部署,整体协同实现全部功能。
260 69
Grafana Loki,轻量级日志系统
|
1月前
|
存储 人工智能 JSON
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
RAG Logger 是一款专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、检索结果记录、LLM 交互记录和性能监控等功能。
74 7
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
|
2月前
|
人工智能 监控 算法
3D-Speaker:阿里通义开源的多模态说话人识别项目,支持说话人识别、语种识别、多模态识别、说话人重叠检测和日志记录
3D-Speaker是阿里巴巴通义实验室推出的多模态说话人识别开源项目,结合声学、语义和视觉信息,提供高精度的说话人识别和语种识别功能。项目包含工业级模型、训练和推理代码,以及大规模多设备、多距离、多方言的数据集,适用于多种应用场景。
428 18
3D-Speaker:阿里通义开源的多模态说话人识别项目,支持说话人识别、语种识别、多模态识别、说话人重叠检测和日志记录
|
2月前
|
人工智能 算法 数据挖掘
开源更新|通义3D-Speaker多说话人日志功能
开源更新|通义3D-Speaker多说话人日志功能
|
3月前
|
敏捷开发 Kubernetes Cloud Native
阿里云云原生技术为企业提供了一套高效、灵活的解决方案,支持跨云部署与管理
在多云环境中,阿里云云原生技术为企业提供了一套高效、灵活的解决方案,支持跨云部署与管理。通过容器化、服务网格等技术,实现了应用的一致性与可移植性,简化了多云环境下的资源管理和服务治理,帮助企业应对复杂的云环境挑战,加速数字化转型。
92 5
|
3月前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
94 3
|
3月前
|
消息中间件 监控 Cloud Native
云原生架构下的数据一致性挑战与解决方案####
在数字化转型加速的今天,云原生架构以其轻量级、弹性伸缩和高可用性成为企业IT架构的首选。然而,在享受其带来的灵活性的同时,数据一致性问题成为了不可忽视的挑战。本文探讨了云原生环境中数据一致性的复杂性,分析了导致数据不一致的根本原因,并提出了几种有效的解决策略,旨在为开发者和企业提供实践指南,确保在动态变化的云环境中保持数据的完整性和准确性。 ####
|
3月前
|
存储 数据采集 监控
开源日志Fluentd
【10月更文挑战第21天】
69 7
|
3月前
|
存储 数据采集 监控
开源日志分析Elasticsearch
【10月更文挑战第22天】
68 5
|
3月前
|
机器学习/深度学习 运维 监控
开源日志分析Kibana
【10月更文挑战第22天】
69 3