Loki+Promtail+Grafana监控K8s日志

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 综上,Loki+Promtail+Grafana 监控组合对于在 K8s 环境中优化日志管理至关重要,它不仅提供了强大且易于扩展的日志收集与汇总工具,还有可视化这些日志的能力。通过有效地使用这套工具,可以显著地提高对应用的运维监控能力和故障诊断效率。

在现代云原生架构中,监控与日志管理对于确保系统稳定性和可靠性至关重要。Kubernetes(K8s)作为当下流行的容器编排平台,对日志的监控管理需求尤为突出。Loki, Promtail 和 Grafana 构成了一套强大的日志监控解决方案,它们协同工作提供了高效的日志采集、存储和可视化功能。

Loki 是一个水平可扩展、高可用性、多租户的日志聚合系统,它被设计用来优雅地与 Grafana 协同工作。Promtail 则是一个日志收集工具,专门用来获取日志并发送到 Loki。Grafana 是一个开放的可视化平台,可以用来绘制时间序列数据的图表、可视化仪表板等。

监控K8s日志的步骤通常包括以下几个方面:

Step 1: 配置并部署 Loki

部署 Loki 可以通过 Kubernetes manifests 或 Helm charts 进行。Helm 是一个 K8s 的包管理工具,它能简化安装和管理 K8s 应用的过程。

Step 2: 配置并部署 Promtail

Once Loki is up and running, the next step is to deploy Promtail on all K8s nodes. Promtail must be configured to discover and scrape log files, parsing and sending them to Loki. Configuration involves defining job entries to tell Promtail which log files to scrape, employing a combination of service discovery and static targets.

Step 3: 搭建 Grafana 并与 Loki 集成

部署 Grafana 在同一个 K8s 集群,并配置 Grafana 去查询 Loki 托管的日志。Grafana 提供了专门的 Loki 数据源插件,方便用户集成并开始查询和可视化日志数据。

实战代码演示

部署 Loki

使用 Helm 部署 Loki 的一种简单命令可能是:

helm install loki grafana/loki-stack

配置 Promtail

Promtail 的配置可以由 Kubernetes ConfigMap 来管理,以下是一个基本的配置示例:

apiVersion: v1
kind: ConfigMap
metadata:
  name: promtail-config
  labels:
    name: promtail
data:
  promtail.yaml: |
    server:
      http_listen_port: 9080
      grpc_listen_port: 0

    positions:
      filename: /tmp/positions.yaml

    clients:
      - url: http://loki:3100/loki/api/v1/push

    scrape_configs:
    - job_name: kubernetes-pods
      kubernetes_sd_configs:
      - role: pod

      relabel_configs:
      - source_labels: [__meta_kubernetes_pod_node_name]
        target_label: __host__

在 Grafana 配置 Loki 数据源

在 Grafana 的界面,需要添加一个新的数据源,选择 Loki 作为类型,并填写 Loki 服务的 URL。

查询和可视化日志

在 Grafana 中创建新的 Dashboard,并配置 Panels 以使用 Loki 数据源进行日志查询。查询可以简单如 {app="your-app-name"}, 这会返回所有标签为 app: your-app-name 的日志条目。

综上,Loki+Promtail+Grafana 监控组合对于在 K8s 环境中优化日志管理至关重要,它不仅提供了强大且易于扩展的日志收集与汇总工具,还有可视化这些日志的能力。通过有效地使用这套工具,可以显著地提高对应用的运维监控能力和故障诊断效率。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
16天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
90 3
|
15天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第27天】在智能运维中,Prometheus和Grafana的组合已成为监控和告警体系的事实标准。Prometheus负责数据收集和存储,支持灵活的查询语言PromQL;Grafana提供数据的可视化展示和告警功能。本文介绍如何配置Prometheus监控目标、Grafana数据源及告警规则,帮助运维团队实时监控系统状态,确保稳定性和可靠性。
80 0
|
1月前
|
存储 监控 固态存储
如何监控和优化 WAL 日志文件的存储空间使用?
如何监控和优化 WAL 日志文件的存储空间使用?
|
2月前
|
Kubernetes API Docker
跟着iLogtail学习容器运行时与K8s下日志采集方案
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
|
1月前
|
监控 网络协议 CDN
阿里云国际监控查询流量、用量查询流量与日志统计流量有差异?
阿里云国际监控查询流量、用量查询流量与日志统计流量有差异?
|
3月前
|
SQL 数据库 Java
Hibernate 日志记录竟藏着这些秘密?快来一探究竟,解锁调试与监控最佳实践
【8月更文挑战第31天】在软件开发中,日志记录对调试和监控至关重要。使用持久化框架 Hibernate 时,合理配置日志可帮助理解其内部机制并优化性能。首先,需选择合适的日志框架,如 Log4j 或 Logback,并配置日志级别;理解 Hibernate 的多级日志,如 DEBUG 和 ERROR,以适应不同开发阶段需求;利用 Hibernate 统计功能监测数据库交互情况;记录自定义日志以跟踪业务逻辑;定期审查和清理日志避免占用过多磁盘空间。综上,有效日志记录能显著提升 Hibernate 应用的性能和稳定性。
50 0
|
3月前
|
开发者 前端开发 编解码
Vaadin解锁移动适配新境界:一招制胜,让你的应用征服所有屏幕!
【8月更文挑战第31天】在移动互联网时代,跨平台应用开发备受青睐。作为一款基于Java的Web应用框架,Vaadin凭借其组件化设计和强大的服务器端渲染能力,助力开发者轻松构建多设备适应的Web应用。本文探讨Vaadin与移动设备的适配策略,包括响应式布局、CSS媒体查询、TouchKit插件及服务器端优化,帮助开发者打造美观且实用的移动端体验。通过这些工具和策略的应用,可有效应对屏幕尺寸、分辨率及操作系统的多样性挑战,满足广大移动用户的使用需求。
65 0
|
11天前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
116 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
1月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
216 3
|
1月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1623 14