数据分析案例-某公司员工数据信息可视化

简介: 数据分析案例-某公司员工数据信息可视化

1.项目背景


       在当今数字化时代,企业数据的收集和分析已经成为企业成功的关键因素之一。员工数据作为企业数据的重要组成部分,对于企业的人力资源管理、战略决策等方面都具有重要的意义。然而,如何有效地整合、分析和利用员工数据,一直是企业面临的挑战。


       员工数据包含了员工的基本信息、工作表现、职业发展等方面,这些数据可以揭示员工的特点、行为和趋势。通过对员工数据的分析和挖掘,企业可以更好地了解员工的需求和期望,优化招聘和培训计划,提高员工的工作满意度和忠诚度。此外,员工数据还可以帮助企业识别潜在的劳动力风险和机会,为企业的战略发展提供数据支持。


       然而,目前很多企业对于员工数据的利用还停留在传统的表格和报表形式,无法直观地呈现数据的特点和趋势。同时,由于数据来源的多样性,数据的准确性和完整性也难以保证。因此,需要一种更加有效的方法来整合、分析和利用员工数据。


       数据可视化是一种将数据以图形、图像等形式呈现出来的方法,可以直观地展示数据的特点和趋势。通过数据可视化,企业可以更加清晰地了解员工情况,为人力资源决策提供有力的支持。同时,数据可视化还可以提高数据的透明度和可信度,加强管理层与员工之间的沟通和信任。


       因此,本次实验旨在通过可视化工具和技术,分析和呈现公司员工数据信息。这种数据可视化对于公司管理和决策制定非常重要,可以帮助领导层更好地了解员工情况,优化流程,提高效率,和制定人力资源策略。


2.数据集介绍


该数据集来源于Kaggle,原始数据集中共有4653条,9个特征变量,各变量解释含义如下:


Education: 员工的教育资格,包括学位、机构和研究领域。


Joining Year: 每位员工加入公司的年份,表明他们的服务年限。


City: 每个员工所在或工作的地点或城市。


Payment Tier: 将员工分为不同的薪资等级。


Age: 每个员工的年龄,提供人口统计洞察。


Gender: 员工的性别认同,促进多样性分析。


Ever Benched: 表示员工是否曾经暂时没有分配过工作。


Experience in Current Domain: 员工在当前领域的经验年数。


Leave or Not: 目标栏。


3.技术工具


Python版本:3.9


代码编辑器:jupyter notebook


4.导入数据


首先导入数据可视化的第三方库,并加载数据集

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')
df = pd.read_csv("Employee.csv")
df.head()


查看数据大小


查看数据基本信息


查看数据描述性统计


删除缺失值和重复值


5.数据可视化


# 员工教育分析
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='Education', palette='Set2')
plt.title('Education of Employees')
plt.show()


1971名员工拥有学士学位,说明大多数员工拥有学士学位。拥有硕士学位的员工637人,156名拥有博士学位的员工。

# 入职年限分布
sns.histplot(data=df, x='JoiningYear', bins=20, kde=True, color='skyblue')
plt.title('Distribution of Joining Years')
plt.show()


2017年是加入该公司的员工人数最多的一年,有662名新员工。紧随其后的是,2015年,有464名新员工加入公司。2013年,共有396名员工加入公司。新员工人数最少的一年是2018年,只有239名员工加入该公司。

# 员工城市分布
city_cnts = df['City'].value_counts()
px.pie(city_cnts, names=city_cnts.index, values=city_cnts.values, 
       title='Employees Distribution by City', color_discrete_sequence=px.colors.sequential.Sunset, 
       hole = 0.5)


大多数员工(42.4%)来自班加罗尔,其次是29%来自浦那,28.7%来自新德里

# 员工年龄分布
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='Age', bins=20, kde=True, color='coral')
plt.title('Employee Ages Distribution')
plt.show()


数据集中员工的最低年龄为22岁。25%的员工年龄在27岁以下或等于27岁。50%的员工年龄在30岁以下或等于30岁。75%的员工年龄在35岁以下或等于35岁。数据集中记录的员工最大年龄为41岁。

# 性别分布
sns.countplot(data=df, x='Gender', palette='muted')
plt.title('Gender Distribution')
plt.show()


组织中男性员工比女性员工多。

# 当前领域的经验分布
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='ExperienceInCurrentDomain', bins=20, kde=True, color='limegreen')
plt.title('Distribution of Experience in Current Domain')
plt.show()


大多数员工有2年工作经验(681名员工),其次是5年工作经验(470名员工)。随着工作年限的增加,员工人数逐渐减少。只有少数员工在当前领域拥有6年(8名员工)或7年(9名员工)的经验。

# 员工休假或未休假人数
sns.countplot(data=df, x='LeaveOrNot', palette='dark')
plt.title('Count of Employees Leave or Not')
plt.show()


大多数员工都没有休假。

# 支付等级分布
paymentTier_cnts = df['PaymentTier'].value_counts()
px.pie(city_cnts, names=paymentTier_cnts.index, values=paymentTier_cnts.values,
        title='Payment Tier Distribution', color_discrete_sequence=px.colors.sequential.Jet, 
        hole = 0.5)


大多数员工(71.5%)处于第三支付层。20.6%的员工处于第二支付层,只有7.89%的员工处于第一支付层。

# 按性别划分的年龄分布
px.box(df, x='Gender', y='Age', color='Gender', title='Age Distribution by Gender' , 
       color_discrete_sequence=px.colors.sequential.deep_r)


大多数男女员工的年龄在27到35岁之间。

# 按支付级别划分的当前领域经验
px.violin(df, x='PaymentTier', y='ExperienceInCurrentDomain', 
                title='Experience in Current Domain by Payment Tier', color = 'PaymentTier', 
                color_discrete_sequence=px.colors.sequential.RdBu_r )


第一个支付级别的大多数员工的工作经验在1年到4年之间。第二支付等级的大多数员工的工作经验在2年到4年之间。大多数第三支付等级的员工的工作经验在1年到4年之间。

# 城市性别分布
plt.figure(figsize=(12, 6))
sns.countplot(data=df, x='City', hue='Gender', palette='Set3')
plt.title('Gender Distribution by City')
plt.show()


班加罗尔和浦那的男性雇员更多。新德里有更多的女性雇员。

# 按性别划分的付款等级和年龄
px.box(df, x='PaymentTier', y='Age', color='Gender', title='Box Plot: Payment Tier and Age by Gender' , 
       color_discrete_sequence=px.colors.sequential.RdBu)


在第一支付层,大多数男性员工的年龄在26 - 35岁之间,大多数女性员工的年龄在26 - 32岁之间。在第二支付层,大多数男性员工的年龄在26 - 34岁之间,大多数女性员工的年龄在27 - 35岁之间。在第三支付层,大多数男性员工的年龄在28 - 35岁之间,大多数女性员工的年龄在27 - 35岁之间。


6.总结


通过上面的可视化分析,我们得出了以下结论:


  • 大多数员工拥有学士学位。
  • 2017年和2015年是新员工数量最多的一年。
  • 班加罗尔的员工集中度最高,其次是浦那和新德里。
  • 员工的年龄范围相对较窄,大多数在27至35岁之间。
  • 男性员工比女性员工多。
  • 87%的部署率是积极的,但应该采取相应的策略来减少不部署。
  • 大多数员工都有2年的工作经验。
  • 员工的稳定性很明显,大多数人都没有休假
  • 大多数员工都在第三支付层。
  • 班加罗尔和浦那的男性员工更多,而新德里的女性员工更多。
  • 拥有硕士和博士学位的员工的存在表明了教育的多样性。


通过本次实验,公司管理层获得了更清晰的员工数据信息,可以更好地制定战略决策,提高公司的绩效和竞争力。数据可视化是一个强大的工具,可以帮助公司更好地了解自身情况,优化资源分配,提高效率。

目录
相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
124 71
|
11天前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
157 92
|
1月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
142 73
|
28天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
70 22
|
1月前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
73 5
|
1月前
|
机器学习/深度学习 数据采集 DataWorks
数据分析经典案例重现:使用DataWorks Notebook 实现Kaggle竞赛之房价预测,成为数据分析大神!
Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合DataWorks Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。
|
1月前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
5月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
105 2
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
293 4
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
160 4
数据分析的 10 个最佳 Python 库

热门文章

最新文章