这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来

简介: 微软在 UserVoice 上运营着⼀个反馈论坛,每个⼈都可以在这⾥提交新点⼦供他⼈投票。票数最⾼的功能请求是“将 Python 作为Excel 的⼀门脚本语⾔”,其得票数差不多是第⼆名的两倍。尽管⾃2015 年这个点⼦发布以来并没有什么实质性进展,但在 2020 年年末,Python 之⽗ Guido van Rossum 发布推⽂称“退休太无聊了”,他将会加入微软。此事令 Excel ⽤户重燃希望。我不知道他的举动是否影响了 Excel 和 Python 的集成,但我清楚的是,为何⼈们迫切需要结合 Excel 和 Python 的⼒量,⽽你⼜应当如何从今天开始将两者结合起来。总之,这就是本

微软在 UserVoice 上运营着⼀个反馈论坛,每个⼈都可以在这⾥提交新点⼦供他⼈投票。票数最⾼的功能请求是“将 Python 作为Excel 的⼀门脚本语⾔”,其得票数差不多是第⼆名的两倍。尽管⾃2015 年这个点⼦发布以来并没有什么实质性进展,但在 2020 年年末,Python 之⽗ Guido van Rossum 发布推⽂称“退休太无聊了”,他将会加入微软。此事令 Excel ⽤户重燃希望。我不知道他的举动是否影响了 Excel 和 Python 的集成,但我清楚的是,为何⼈们迫切需要结合 Excel 和 Python 的⼒量,⽽你⼜应当如何从今天开始将两者结合起来。总之,这就是本手册的主要内容。


Python :它是⼀门通⽤编程语⾔,并且已然成为最受分析师和数据科学家⻘睐的编程语⾔。如果把 Python ⽤到 Excel上,那么你在各⽅⾯都能体会到 Python 带来的好处,⽆论是⾃动化Excel,访问、准备数据集,还是执⾏数据分析、可视化数据。最重要的是,你可以在 Excel 之外重⽤你的 Python 技能。如果需要更⾼的算⼒,那么你可以轻易地将量化模型、模拟、机器学习应⽤程序迁移到云上——云端有⽆穷的计算资源在等着你。

手册目录

限于文章篇幅原因,只能以截图的形式展示出来,有需要的小伙伴可以  点击这里获取!

第⼀部分 Python ⼊门

在介绍本书要⽤到的⼯具之前,我们⾸先会看看为什么 Python 能成为 Excel 的好搭档。随后,第⼀部分会介绍 Anaconda Python 发⾏版、Visual Studio Code 和 Jupyter 笔记本。在这⼀部分中,我会教给你⾜够的 Python 知识,以便你掌握本书的剩余部分。

  • 开发环境

  • 数据结构

第⼆部分 pandas ⼊门

pandas 是值得信赖的 Python 数据分析库。我们会了解如何利⽤Jupyter 笔记本和 pandas 来替代 Excel ⼯作簿。pandas 的代码通常更易于维护,并且效率⽐ Excel ⼯作簿更⾼。不仅如此,你还可以⽤它来操作⼀张⼯作表放不下的数据集。和 Excel 不同,pandas 让你的代码可以在任何环境中运⾏,包括云端。

  • NumPy ⼊门

  • DataFrame Series

第三部分 在 Excel 之外读写 Excel ⽂件

这⼀部分讲的是如何运⽤ Python 包来操作 Excel ⽂件,⽐如pandas、OpenPyXL、XlsxWriter、pyxlsb、xlrd 和 xlwt。这些包能够代替 Excel 直接读写磁盘上的 Excel ⼯作簿,也就是说,你不需要实际安装 Excel 就能进⾏这些操作。这些包可以在任何⽀持 Python的平台上⼯作,包括 Windows、macOS 和 Linux。对于读取 Excel⽂件的包来说,⼀个典型⽤例就是每天早上你⽤它读取从其他公司或者外部系统发来的 Excel ⽂件中的数据,然后将这些数据存储在数据库中。⽽对于写⼊ Excel ⽂件的包来说,你在各种应⽤程序中都能看到的“导出为 Excel ⽂件”按钮,背后就是它的功劳。

第四部分 使⽤ xlwings 对 Excel 应⽤程序进⾏编程


限于文章篇幅原因,只能以截图的形式展示出来,有需要的小伙伴可以  点击这里获取!

相关文章
|
15天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
43 0
|
9天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
42 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
9天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
21 2
|
9天前
|
算法 Python
Python 大神修炼手册:图的深度优先&广度优先遍历,深入骨髓的解析
在 Python 编程中,掌握图的深度优先遍历(DFS)和广度优先遍历(BFS)是进阶的关键。这两种算法不仅理论重要,还能解决实际问题。本文介绍了图的基本概念、邻接表表示方法,并给出了 DFS 和 BFS 的 Python 实现代码示例,帮助读者深入理解并应用这些算法。
21 2
|
16天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
9天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
1月前
|
数据采集 存储 JavaScript
自动化数据处理:使用Selenium与Excel打造的数据爬取管道
本文介绍了一种使用Selenium和Excel结合代理IP技术从WIPO品牌数据库(branddb.wipo.int)自动化爬取专利信息的方法。通过Selenium模拟用户操作,处理JavaScript动态加载页面,利用代理IP避免IP封禁,确保数据爬取稳定性和隐私性。爬取的数据将存储在Excel中,便于后续分析。此外,文章还详细介绍了Selenium的基本设置、代理IP配置及使用技巧,并探讨了未来可能采用的更多防反爬策略,以提升爬虫效率和稳定性。
|
3月前
|
关系型数据库 MySQL Shell
不通过navicat工具怎么把查询数据导出到excel表中
不通过navicat工具怎么把查询数据导出到excel表中
44 0