Mixtral 8X7B MoE模型基于阿里云人工智能平台PAI实践合集

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 本文介绍如何在PAI平台针对Mixtral 8x7B大模型的微调和推理服务的最佳实践,助力AI开发者快速开箱。以下我们将分别展示具体使用步骤。

1.背景


Mixtral 8x7B大模型是Mixtral AI推出的基于decoder-only架构的稀疏专家混合网络(Mixture-Of-Experts,MOE)开源大语言模型。这一模型具有46.7B的总参数量,对于每个token,路由器网络选择八组专家网络中的两组进行处理,并且将其输出累加组合,在增加模型参数总量的同时,优化了模型推理的成本。在大多数基准测试中,Mixtral 8x7B模型与Llama2 70B和GPT-3.5表现相当,因此具有很高的使用性价比。

阿里云人工智能平台PAI是面向开发者和企业的机器学习/深度学习平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务。

本文介绍如何在PAI平台针对Mixtral 8x7B大模型的微调和推理服务的最佳实践,助力AI开发者快速开箱。以下我们将分别展示具体使用步骤。


2.使用PAI-DSW轻量化微调Mixtral 8x7B MOE大模型


PAI-DSW是云端机器学习开发IDE,为用户提供交互式编程环境,同时提供了丰富的计算资源。我们在智码实验室(https://gallery.pai-ml.com/)Notebook Gallery中上线了两个微调Mixtral 8x7B MOE大模型的示例,参见下图:

image.png

上述Notebook可以使用阿里云PAI-DSW的实例打开,并且需要选择对应的计算资源和镜像。


3.使用Swift轻量化微调Mixtral 8x7B MOE大模型


Swift是魔搭ModelScope开源社区推出的轻量级训练推理工具开源库,使用Swift进行这一大模型LoRA轻量化微调需要使用2张GU108(80G)及以上资源。在安装完对应依赖后,我们首先下载模型至本地:

!apt-getupdate!echoy|apt-getinstallaria2defaria2(url, filename, d):
!aria2c--console-log-level=error-c-x16-s16 {url} -o {filename} -d {d}
mixtral_url="http://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/mixtral/Mixtral-8x7B-Instruct-v0.1.tar"aria2(mixtral_url, mixtral_url.split("/")[-1], "/root/")
!cd/root&&mkdir-pAI-ModelScope!cd/root&&tar-xfMixtral-8x7B-Instruct-v0.1.tar-C/root/AI-ModelScopeimportosos.environ['MODELSCOPE_CACHE']='/root'

当模型下载完毕后,我们使用Swift一键拉起训练任务:

!cdswift/examples/pytorch/llm&&PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
pythonllm_sft.py \
--model_id_or_pathAI-ModelScope/Mixtral-8x7B-Instruct-v0.1 \
--model_revisionmaster \
--sft_typelora \
--tuner_backendswift \
--dtypeAUTO \
--output_dir/root/output \
--ddp_backendnccl \
--datasetalpaca-zh \
--train_dataset_sample100 \
--num_train_epochs2 \
--max_length2048 \
--check_dataset_strategywarning \
--lora_rank8 \
--lora_alpha32 \
--lora_dropout_p0.05 \
--lora_target_modulesALL \
--batch_size1 \
--weight_decay0.01 \
--learning_rate1e-4 \
--gradient_accumulation_steps16 \
--max_grad_norm0.5 \
--warmup_ratio0.03 \
--eval_steps300 \
--save_steps300 \
--save_total_limit2 \
--logging_steps10 \
--only_save_modeltrue \
--gradient_checkpointingfalse

模型训练完成后,我们将学习到的LoRA权重合并到模型Checkpoint中:

!swiftmerge-lora--ckpt_dir'/root/output/mistral-7b-moe-instruct/v3-20231215-111107/checkpoint-12'

其中,ckpt_dir参数的值需要替换成模型LoRA权重保存路径。为了测试模型训练的正确性,我们可以使用transformers库进行离线推理测试:

fromtransformersimportAutoModelForCausalLM, AutoTokenizermodel_id="/root/output/mistral-7b-moe-instruct/v3-20231215-111107/checkpoint-12-merged"tokenizer=AutoTokenizer.from_pretrained(model_id, device_map='auto')
model=AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')
text="""[INST] <<SYS>>You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.<</SYS>>写一首歌的过程从开始到结束。 [/INST]"""inputs=tokenizer(text, return_tensors="pt")
outputs=model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))


4.使用Deepspeed轻量化微调Mixtral 8x7B MOE大模型


我们也可以使用Deepspeed对Mixtral 8x7B MOE大模型进行LoRA轻量化微调。同样的,我们需要使用2张GU108(80G)及以上资源。我们首先下载模型至本地:

!apt-getupdate!echoy|apt-getinstallaria2defaria2(url, filename, d):
!aria2c--console-log-level=error-c-x16-s16 {url} -o {filename} -d {d}
mixtral_url="http://pai-vision-data-inner-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/mixtral/Mixtral-8x7B-Instruct-v0.1.tar"aria2(mixtral_url, mixtral_url.split("/")[-1], "/root/")
!cd/root&&tar-xfMixtral-8x7B-Instruct-v0.1.tar

第二步,我们下载一个示例古诗生成数据集,用户可以根据下述数据格式准备自己的数据集。

!wget-chttps://pai-quickstart-predeploy-hangzhou.oss-cn-hangzhou.aliyuncs.com/huggingface/datasets/llm_instruct/en_poetry_train_mixtral.json!wget-chttps://pai-quickstart-predeploy-hangzhou.oss-cn-hangzhou.aliyuncs.com/huggingface/datasets/llm_instruct/en_poetry_test_mixtral.json

第三步,我们可以修改示例命令的超参数,并且拉起训练任务。

!mkdir-p/root/output!deepspeed/ml/code/train_sft.py \
--model_name_or_path/root/Mixtral-8x7B-Instruct-v0.1/ \
--train_pathen_poetry_train_mixtral.json \
--valid_pathen_poetry_test_mixtral.json \
--learning_rate1e-5 \
--lora_dim32 \
--max_seq_len256 \
--modelmixtral \
--num_train_epochs1 \
--per_device_train_batch_size8 \
--zero_stage3 \
--gradient_checkpointing \
--print_loss \
--deepspeed \
--output_dir/root/output/ \
--offload

当训练结束后,我们拷贝额外配置文件至输出文件夹:

!cp/root/Mixtral-8x7B-Instruct-v0.1/generation_config.json/root/output!cp/root/Mixtral-8x7B-Instruct-v0.1/special_tokens_map.json/root/output!cp/root/Mixtral-8x7B-Instruct-v0.1/tokenizer.json/root/output!cp/root/Mixtral-8x7B-Instruct-v0.1/tokenizer.model/root/output!cp/root/Mixtral-8x7B-Instruct-v0.1/tokenizer_config.json/root/output

我们同样可以使用transformers库进行离线推理测试:

importosfromtransformersimportAutoModelForCausalLM, AutoTokenizerimporttorchmodel_id="/root/output/"tokenizer=AutoTokenizer.from_pretrained(model_id)
model=AutoModelForCausalLM.from_pretrained(model_id,device_map='auto',torch_dtype=torch.float16)
text="""[INST] Write a poem on a topic 'Care for Thy Soul as Thing of Greatest Price': [/INST]"""inputs=tokenizer(text, return_tensors="pt").to('cuda')
outputs=model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

如果用户需要将上述模型部署为EAS服务,需要将格式转换成safetensors格式:

state_dict=model.state_dict()
model.save_pretrained(
model_id,
state_dict=state_dict,
safe_serialization=True)


5.使用PAI-EAS在线部署Mixtral 8x7B MOE大模型


PAI-EAS是PAI平台推出的弹性推理服务,可以将各种大模型部署为在线服务。当Mixtral 8x7B MOE大模型微调完毕后,我们可以将其部署为PAI-EAS服务。这里,我们介绍使用PAI-SDK将上述模型进行部署。首先,我们在PAI-DSW环境安装PAI-SDK:

!python-mpipinstallalipai--upgrade

在安装完成后,在在命令行终端上执行以下命令,按照引导完成配置AccessKey、PAI工作空间以及 OSS Bucket:

python-mpai.toolkit.config

我们将训练好的模型上传至OSS Bucket。在下述命令中,source_path为模型Checkpoint保存的本地路径,oss_path为上传至OSS的目标路径:

importpaifrompai.sessionimportget_default_sessionfrompai.common.oss_utilsimportuploadprint(pai.__version__)
sess=get_default_session()
# 上传模型到默认的Bucketmodel_uri=upload(
source_path="/root/output", 
oss_path="mixtral-7b-moe-instruct-sft-ds")
print(model_uri)

PAI 提供了Mixtral 8X7B MOE 模型部署镜像和部署代码,用户可以通过相应的部署配置,将微调后的模型部署到PAI-EAS。

frompai.modelimportRegisteredModelfrompai.predictorimportPredictor# 获取PAI提供的Mixtral模型服务配置(目前仅支持乌兰察布)inference_spec=RegisteredModel(
"Mixtral-8x7B-Instruct-v0.1",
model_provider="pai",
).inference_spec# 修改部署配置,使用微调后的模型infer_spec.mount(model_uri, model_path="/ml/model")
# 部署推理服务服务m=Model(inference_spec=infer_spec)
predictor: Predictor=m.deploy(
service_name='mixtral_sdk_example_ds',
options={
"metadata.quota_id": "<ResourceGroupQuotaId>",
"metadata.quota_type": "Lingjun",
"metadata.workspace_id": session.workspace_id    }
)
# 查看服务的Endpoint和Tokenendpoint=predictor.internet_endpointtoken=predictor.access_token

以上配置项中,metadata.quota_id是用户购买的灵骏资源配额ID,在购买了灵骏资源之后,用户可以从PAI控制台页面的资源配额入口获取相应的信息。

部署的推理服务支持 OpenAI 的 API 风格进行调用,通过推理服务的详情页,用户可以获得服务访问地址(Endpoint)和访问凭证(Token)。使用 cURL 调用推理服务的示例如下:

# 请注意替换为使用服务的Endpoint和TokenexportAPI_ENDPOINT="<ENDPOINT>"exportAPI_TOKEN="<TOKEN>"# 查看模型listcurl$API_ENDPOINT/v1/models \
-H"Content-Type: application/json" \
-H"Authorization: Bearer $API_TOKEN"# 调用通用的文本生成APIcurl$API_ENDPOINT/v1/completions \
-H"Content-Type: application/json" \
-H"Authorization: Bearer $API_TOKEN" \
-d'{"model": "Mixtral-8x7B-Instruct-v0.1",
"prompt": "San Francisco is a",
"max_tokens": 256,
"temperature": 0}'curl$API_ENDPOINT/v1/chat/completions \
-H"Authorization: Bearer $API_TOKEN" \
-H"Content-Type: application/json" \
-d'{"model": "Mixtral-8x7B-Instruct-v0.1",
"messages": [
          {"role": "user", "content": "介绍一下上海的历史"}
        ]
}'


6.使用PAI-QuickStart微调和部署Mixtral 8x7B MOE大模型


快速开始(PAI-QuickStart)集成了国内外AI开源社区中优质的预训练模型,支持零代码或是SDK的方式实现微调和部署Mixtral 8x7B MOE大模型,用户只需要格式准备训练集和验证集,填写训练时候使用的超参数就可以一键拉起训练任务。Mixtral的模型卡片如下图所示:

image.png

我们可以根据实际需求上传训练集和验证集,调整超参数,例如learning_rate、sequence_length、train_iters等,如下所示:

image.png

点击“训练”按钮,PAI-QuickStart开始进行训练,用户可以查看训练任务状态和训练日志,如下所示:

image.png

如果需要将模型部署至PAI-EAS,可以在同一页面的模型部署卡面选择资源组,并且点击“部署”按钮实现一键部署。模型调用方式和上文PAI-EAS调用方式相同。

image.png


7.相关资料


阿里云人工智能平台PAI

交互式建模PAI-DSW

模型在线服务PAI-EAS

PAI 快速开始

PAI Python SDK

阿里云PAI灵骏智算服务

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
21天前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
12天前
|
人工智能 算法 网络安全
基于PAI+专属网关+私网连接:构建全链路Deepseek云上私有化部署与模型调用架构
本文介绍了阿里云通过PAI+专属网关+私网连接方案,帮助企业实现DeepSeek-R1模型的私有化部署。方案解决了算力成本高、资源紧张、部署复杂和数据安全等问题,支持全链路零公网暴露及全球低延迟算力网络,最终实现技术可控、成本优化与安全可靠的AI部署路径,满足企业全球化业务需求。
|
1月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B
PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。 现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
83 6
|
22天前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
319 6
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
3月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
658 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
|
3月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
101 14

热门文章

最新文章

相关产品

  • 人工智能平台 PAI
  • 下一篇
    oss创建bucket