一颗“中国芯”的AI创新实践

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 艾为电子基于钉钉AI PaaS炼丹炉打造了一套智能解决方案,让智能客服更懂艾为与客户

上海艾为电子技术股份有限公司(以下简称“艾为电子”),成立于2008年6月,是一家专注于芯片设计的公司,以高性能数模混合信号、电源管理和信号链等IC设计为主要领域。公司在2022年获得了科创板硬科技领军企业、上海市级设计创新中心等荣誉称号,并在同年8月成功在上海证券交易所科创板上市。艾为电子致力于深入了解客户需求,专注自主研发和创新,并已经推出了超过1000余款产品,涵盖了消费类电子、AIoT、工业和汽车等市场领域。截至目前,公司拥有一千余名员工,其中技术人员超过900人,并且取得了398项国内外专利和51项软件著作权。


智能客服只是我们在AI创新领域探索的一个起点。未来规划中,我相信通过这次经验的沉淀,借助钉钉AI PaaS平台和数字人等不断增强的技术能力,我们可以在更广泛的企业知识资产(非结构化)运营领域以及结构化数据的随需获取上探索和共创。我们将解决更多实际业务痛点,甚至在解决行业共性难题上创造更大的价值。

                                                                                                                          --- 陆轶 艾为电子CIO


“XX产品的XX(指标)是什么要求?”这个问题很常见,在电商体系里,消费者发起这样的咨询时,客服甚至需要15秒内有回应。


但如果产品SKU有几千,涉及的子类别有几十种,包含不同领域的专业知识,同时每款产品参数也有几十个,客服该如何回复得快速、准确又专业?


这就是艾为电子的技术服务团队在日常工作里经常遇到的问题。作为国内知名芯片设计商,艾为电子的产品分声、光、电、射、手五大类别,产品广泛应用于消费电子、物联网、工业企业以及智能设备领域。


如果你见过芯片产品说明书,就会知道要熟悉几千种芯片的细节多么有挑战。通常情况下它由英文撰写,文件长度在几十上百页不等。但最大难度还不是体量大,而在于它涉及的知识门槛,里面包含了大量的技术专有名词、表格、电路图和各种技术参数。有时候一些表格之间还会互相关联,同时一些词汇在芯片产品说明书里的意思与通用的含义还会出现不一致。要准确回答海量的与产品参数相关的问题,非常考验回答者的行业知识,一般的客服人员根本无法应对这类问题。


针对以上痛点,艾为电子基于钉钉AI PaaS炼丹炉打造了一套智能化解决方案,让智能客服更懂艾为,更懂客户。


传统智能客服为何不智能?


在许多行业,企业通常会选择建一个客服系统来解决问题。但传统的客服方案会预先设置关键词,列好各种问题的答案。客户的问题触及关键词,系统会弹出提前准备好的答案。


这个模式也有弊端。首先,传统客服的关键词匹配模式需要大量标记,客服维护成本居高不下。


其次,如果没按预先准备的表述来提问,触发不了关键词,系统就识别不了问题。例如问题里提某项参数“不大于”某个值,而FAQ(常见问题解答)是按照“小于”这一关键词预备问题,就无法弹出准备好的答案。


此外,传统客服的关键词匹配模式,回复往往生硬、死板,难以推断、转换语意或根据上下文进行理解,客户体验很差。


 


因此,虽然配有客服系统,艾为电子还是配置了七八十名技术专家,每天在本职技术工作之外,花大量时间从产品说明书中来确认细节,回答这些复杂的专业问题。


即便是最专业的技术人员,也不可能把一千多款产品所有参数都记在脑子里,每次遇到问题的时候也要去重新查资料,然后思考,再进行回答。


为此,艾为电子通过钉钉的AI PaaS 做了智能化升级,搭建了一套智能客服系统,把技术服务人员彻底解放了出来。


如何搭建一套更懂客户的智能客服?


为了搭建一套更懂客户的智能客服,艾为和钉钉做了大量探索。


首先,艾为电子基于钉钉炼丹炉训练了一套专属模型。


艾为电子的产品手册多为英文,有些专属词汇不仅需要中英文转译,甚至需要“三译”——除了语言之外,某个词汇在不同场景、行业中表达的意思都会不同。而且,芯片行业的产品手册与一般通用性的产品手册也不一样。其中不止有专业名词,还有大量芯片的设计图纸、参数的对比等。


为此艾为电子将所有产品手册、设计指南和FAQ 等资料上传至钉钉炼丹炉进行训练和处理,打造了艾为专属模型。

其次, 基于这一专属模型搭建了“IC 智能客服”。


为了让 IC 智能客服回答更准确,钉钉和艾为电子做了很多努力,如把企业知识转换并存储到向量数据库,通过向量相似度和知识图谱相结合,用RAG方法召回与用户意图相关的知识,通过大模型,结合行业通识和企业专识生成合适的答案


这背后涉及到个性化文档版式解析、知识图谱+向量检索多路召回、多模型适配、客户数据On-Premise 等,能实现工程平台白屏化轻交付。


通过钉钉AI PaaS 搭建的智能客服,可以‘理解’上下文对话,准确识别客户意图,大大提升了客户体验。


比如艾为电子产品中的一个电压属性有最小值、最大值、典型值,在常温状态、高温状态等不同场景下,这些值的要求不同。当客户提问时,大多不会直接提问值是多少,而可能询问“71001这款产品支持2.7V的环境吗?”传统客服大概率会回答出产品所支持的电压环境区间如“0.3V~6V之间”,而IC 智能客服确能给出“支持”这一明确的答案。


更多智能化解决方案等你来探索


在钉钉,已经探索出了一整套 Chat AI智能解决方案。其中,艾为电子基于钉钉 AI PaaS 落地的智能客服,只是AI创新的一个切面,用到的是面向知识资产的Chat Memo 解决方案,基于这套方案,相当于让员工拥有了一个工作“外脑”,通过自然语言就可以使用公司的产品知识,全员生产力和公司产能水位登上了新台阶;


除此之外,钉钉还提供了其他三个解决方案:


一是面向企业数字资产的Chat BI去掉报表开发环节,把随意、灵活的自然语言通过大模型转换和生成为结构化、可执行的SQL代码,用自然语言即可随时、随地查看数据,让闪现的问题和决断有即时数据支撑;


二是面向软件资产的Chat Form,支持一句话生成和提交表单,解放现场作业人员的双手,释放最后一公里生产力;


三是面向制度资产的Chat Audit,让大模型学习企业制度和规则,然后通过自然语言下达指令,让大模型基于规则对各种过程和结果的内容进行自动化审计,并生成初步审计报告供审计员参考。


基于以上智能化解决方案,钉钉 AI  PaaS 真正进入企业业务层面,实现了从玩具到生产力工具的跃迁,帮助客户降本增效。

相关文章
|
25天前
|
人工智能 IDE Java
AI Coding实践:CodeFuse + prompt 从系分到代码
在蚂蚁国际信贷业务系统建设过程中,技术团队始终面临双重考验:一方面需应对日益加速的需求迭代周期,满足严苛的代码质量规范与金融安全合规要求;另一方面,跨地域研发团队的协同效率与代码标准统一性,在传统开发模式下逐渐显现瓶颈。为突破效率制约、提升交付质量,我们积极探索人工智能辅助代码生成技术(AI Coding)的应用实践。本文基于蚂蚁国际信贷技术团队近期的实际项目经验,梳理AI辅助开发在金融级系统快速迭代场景中的实施要点并分享阶段性实践心得。
291 25
AI Coding实践:CodeFuse + prompt 从系分到代码
|
1月前
|
人工智能 自然语言处理 测试技术
从人工到AI驱动:天猫测试全流程自动化变革实践
天猫技术质量团队探索AI在测试全流程的落地应用,覆盖需求解析、用例生成、数据构造、执行验证等核心环节。通过AI+自然语言驱动,实现测试自动化、可溯化与可管理化,在用例生成、数据构造和执行校验中显著提效,推动测试体系从人工迈向AI全流程自动化,提升效率40%以上,用例覆盖超70%,并构建行业级知识资产沉淀平台。
从人工到AI驱动:天猫测试全流程自动化变革实践
|
1月前
|
消息中间件 人工智能 Kafka
AI 时代的数据通道:云消息队列 Kafka 的演进与实践
云消息队列 Kafka 版通过在架构创新、性能优化与生态融合等方面的突破性进展,为企业构建实时数据驱动的应用提供了坚实支撑,持续赋能客户业务创新。
305 25
|
25天前
|
数据采集 存储 人工智能
从0到1:天猫AI测试用例生成的实践与突破
本文系统阐述了天猫技术团队在AI赋能测试领域的深度实践与探索,讲述了智能测试用例生成的落地路径。
从0到1:天猫AI测试用例生成的实践与突破
|
27天前
|
人工智能 新制造
TsingtaoAI受邀参加宁波AI海曙科创训练营并分享技术落地实践
10月12日至15日,由宁波市海曙区组织部主办的AI海曙科创训练营在宁波成功举办。作为受邀企业代表,TsingtaoAI团队深入参与了多项活动,与政府领导、行业专家及科创企业代表围绕AI技术在制造业、成果转化等领域的实际应用展开交流,用真实案例诠释了“技术扎根产业”的价值逻辑。
69 2
|
1月前
|
人工智能 搜索推荐 算法
用AI提示词搞定基金定投:技术人的理财工具实践
本文将AI提示词工程应用于基金定投,为技术人打造一套系统化、可执行的理财方案。通过结构化指令,AI可生成个性化定投策略,覆盖目标设定、资产配置、风险控制与动态调整,帮助用户降低决策门槛,规避情绪干扰,实现科学理财。
317 13
|
1月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
1月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
本文介绍RAG(检索增强生成)技术,结合Spring AI与本地及云知识库实现学术分析AI应用,利用阿里云Qwen-Plus模型提升回答准确性与可信度。
736 90
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
|
27天前
|
人工智能 运维 关系型数据库
云栖大会|AI时代的数据库变革升级与实践:Data+AI驱动企业智能新范式
2025云栖大会“AI时代的数据库变革”专场,阿里云瑶池联合B站、小鹏、NVIDIA等分享Data+AI融合实践,发布PolarDB湖库一体化、ApsaraDB Agent等创新成果,全面展现数据库在多模态、智能体、具身智能等场景的技术演进与落地。
|
2月前
|
SQL 人工智能 数据可视化
高校迎新管理系统:基于 smardaten AI + 无代码开发实践
针对高校迎新痛点,基于smardaten无代码平台构建全流程数字化管理系统,集成信息采集、绿色通道、宿舍管理等七大模块,通过AI生成框架、可视化配置审批流与权限,实现高效、精准、可扩展的迎新服务,大幅提升管理效率与新生体验。