基于OFDM通信系统的PAPR抑制算法matlab仿真,对比IPTS,OPTS,CEPTS三种算法

简介: 基于OFDM通信系统的PAPR抑制算法matlab仿真,对比IPTS,OPTS,CEPTS三种算法

1.算法运行效果图预览
1f262b9823d60a6e82ebc8ad4bcd1de5_82780907_202401031331140643492818_Expires=1704260474&Signature=xWQX6aivOKz6r3CjS41Ni%2FJrwaw%3D&domain=8.png

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于OFDM通信系统的PAPR抑制算法是降低OFDM信号峰均比(Peak-to-Average Power Ratio,PAPR)的技术,以提高通信系统的性能和稳定性。其中,IPTS(选择性映射迭代削峰)、OPTS(优化的PTS)和CEPTS(压缩扩展变换选择性映射)是三种常见的PAPR抑制算法。下面将详细介绍这三种算法的原理和数学公式。

3.1、IPTS算法
IPTS算法是一种基于选择性映射迭代削峰的方法,通过迭代削峰和选择性映射,降低OFDM信号的PAPR。具体步骤如下:

对OFDM信号进行IFFT变换,得到时域信号。
对时域信号进行削峰处理,将峰值超过一定阈值的信号进行削减。
对削减后的信号进行IFFT变换,得到新的频域信号。
通过选择性映射,选择PAPR最低的频域信号作为输出信号。
3.2、OPTS算法
OPTS算法是一种基于优化的PTS方法,通过将OFDM信号分成多个子块,对每个子块进行相位旋转和幅度调整,以降低PAPR。具体步骤如下:

将OFDM信号分成多个子块。
对每个子块进行相位旋转和幅度调整,使得子块的PAPR最低。
将调整后的子块重新组合成完整的OFDM信号。
3.3、CEPTS算法
CEPTS算法是一种基于压缩扩展变换选择性映射的方法,通过对OFDM信号进行压缩扩展变换和选择性映射,降低PAPR。具体步骤如下:

对OFDM信号进行压缩扩展变换,得到多个变换后的信号。
对每个变换后的信号进行PAPR计算,选择PAPR最低的信号作为输出信号。
将选择的信号进行逆变换,得到最终的OFDM信号。
综上所述,IPTS、OPTS和CEPTS算法都是通过不同的方式对OFDM信号进行处理,以降低PAPR,提高通信系统的性能和稳定性。具体选择哪种算法需要根据实际应用场景和性能需求来决定。

4.部分核心程序
```for k=1:Nframes
if mod(k,10) == 0
k/10
end
%产生数据源
QPSK_Ind = floor(length(Map_qpsk)rand(1,Nfft)) + 1;
%调制,这里为了研究PAPR性能,所以不加入编码模块和交织模块
Qpsk_mod = Map_qpsk(QPSK_Ind(1,:));
%进行IFFT变换
Dat_Ifft = ifft(Qpsk_mod,[],2);
%计算功率和PAPR
Signal_Power = abs(Dat_Ifft.^2);
Peak_Power = max(Signal_Power,[],2);
Mean_Power = mean(Signal_Power,2);
PAPRo(k) = 10
log10(Peak_Power./Mean_Power);
%随机分块
QPSK_Ind = randperm(Nfft);
A = zeros(Npts,Nfft);
for v=1:Npts
A(v,QPSK_Ind(v:Npts:Nfft)) = Qpsk_mod(QPSK_Ind(v:Npts:Nfft));
end
a = ifft(A,[],2);
%限幅
Tho = mean2(abs(a));
[rr,cc] = size(a);
for i = 1:rr
for j = 1:cc
if abs(a(i,j)) > Tho
a(i,j) = Tho(real(a(i,j)) + ijimag(a(i,j)))/abs(a(i,j));
end
end
end
%PCME算法
P0 = 0.5*ones(1,Npts);%初始概率为0.5
Ps = zeros(Iter,Npts);
P = zeros(Iter,Npts);
for iter = 1:Iter
%根据随机分布,产生一组序列c
....................................................................

    for j = 1:J
        Phase_Factor = repmat(1-2*c(j,:)',1,Nfft);  
        aa           = sum(a.*Phase_Factor);
        Signal_Power = abs(aa.^2);
        Peak_Power   = max(Signal_Power,[],2);
        Mean_Power   = mean(Signal_Power,2);
        F(j)         = 10*log10(Peak_Power./Mean_Power);
    end

    %对当前迭代产生的J个F进行增序排序
    [F2,IND]      = sort(F);
    %计算rj
    r(iter)   = sum(F2(1:ceil(Po*J)))/ceil(Po*J);
    IND2      = find(F <= r(iter));

    if isempty(IND2) == 1
       IND2 = 1;
    else
       IND2 = IND2;  
    end

    for pp = 1:Npts

        for s1 = 1:J
            I(pp,s1) = c(IND(s1),pp);
            tmp11s(s1) = I(pp,s1)*exp(-1*F2(s1)); 
            tmp12s(s1) = exp(-1*F2(s1)); 
        end
        P(iter,pp) =  sum(tmp11s)/sum(tmp12s);
    end        
    %更新概率P
    ......................................................
end
%根据PMCE计算得到的相位因子来计算PAPR值
aa                = sum(a.*repmat(sign((1-2*Ps(iter,:)))',1,Nfft));
Signal_Power      = abs(aa.^2);
Peak_Power_temp   = max(Signal_Power,[],2);
Mean_Power_temp   = mean(Signal_Power,2);
PAPR_temp(k)      = 10*log10(Peak_Power_temp./Mean_Power_temp);

end

```

相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
9天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。