m基于深度学习网络的美食识别系统matlab仿真,带GUI界面

简介: m基于深度学习网络的美食识别系统matlab仿真,带GUI界面

1.算法仿真效果
matlab2022a仿真结果如下:

1.png
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法涉及理论知识概要
基于深度学习网络的美食识别系统是一个复杂的机器视觉应用,它结合了深度学习、图像处理、模式识别等多个领域的知识。GoogleNet是一种深度卷积神经网络(CNN),它由多个卷积层、池化层和全连接层组成。该模型可以自动学习和提取图像特征,从而实现对图像中目标物体的检测和分类。

  GoogleNet算法的核心思想是采用一种称为“Inception”的网络结构,通过在多个尺度上提取图像特征,从而实现对目标物体的检测和分类。在疲劳检测中,GoogleNet模型首先对驾驶员面部图像进行预处理,然后通过多个卷积层和池化层提取面部特征,最后使用全连接层进行分类输出。

GoogleNet模型的数学公式主要包括以下几个部分:

(1)卷积层计算:对于每个卷积层,计算输入图像与卷积核的卷积结果。公式如下:

     C = Conv2D(F, I) (3)

其中,C表示卷积结果,F表示卷积核,I表示输入图像。

(2)池化层计算:对于每个池化层,将输入特征图进行下采样,从而降低特征图的维度。公式如下:

  P = MaxPooling2D(C) (4)

其中,P表示池化结果,C表示输入特征图。

(3)全连接层计算:对于每个全连接层,将输入特征与权重进行线性组合,然后添加偏置项,并通过激活函数进行非线性变换。公式如下:

Z = W * P + B (5)

其中,Z表示全连接层的输出结果,W表示权重矩阵,P表示输入特征图,B表示偏置向量。

(4)分类输出:最后,将全连接层的输出结果进行softmax归一化,得到每个类别的概率值。公式如下:

y = Softmax(Z) (6)

其中,y表示每个类别的概率值,Z表示全连接层的输出结果。

3.MATLAB核心程序
```function edit5_Callback(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text
% str2double(get(hObject,'String')) returns contents of edit5 as a double

% --- Executes during object creation, after setting all properties.
function edit5_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end

function edit6_Callback(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit6 as text
% str2double(get(hObject,'String')) returns contents of edit6 as a double

% --- Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Name1 = get(handles.edit7, 'String');
NEpochs = str2num(get(handles.edit8, 'String'));
NMB = str2num(get(handles.edit9, 'String'));
LR = str2num(get(handles.edit10, 'String'));
Rate = str2num(get(handles.edit11, 'String'));

% 使用 imageDatastore 加载图像数据集
Dataset = imageDatastore(Name1, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 将数据集分割为训练集、验证集和测试集
[Training_Dataset, Validation_Dataset, Testing_Dataset] = splitEachLabel(Dataset, Rate, (1-Rate)/2, (1-Rate)/2);
% 加载预训练的 GoogleNet 网络
load googlenet.mat

% 获取输入层的大小
Input_Layer_Size = net.Layers(1).InputSize(1:2);

% 将图像数据集调整为预训练网络的输入尺寸
Resized_Training_Dataset = augmentedImageDatastore(Input_Layer_Size ,Training_Dataset);
Resized_Validation_Dataset = augmentedImageDatastore(Input_Layer_Size ,Validation_Dataset);
Resized_Testing_Dataset = augmentedImageDatastore(Input_Layer_Size ,Testing_Dataset);

% 获取特征学习层和分类器层的名称
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;
% 计算数据集的类别数目
Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的全连接特征学习层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);
% 创建新的分类器层
New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 获取完整网络架构
Network_Architecture = layerGraph(net);
% 替换网络中的特征学习层和分类器层
New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);
```

相关文章
|
2天前
|
监控 负载均衡 网络协议
|
4天前
|
机器学习/深度学习 算法 计算机视觉
m基于Yolov2深度学习网络的人体喝水行为视频检测系统matlab仿真,带GUI界面
MATLAB 2022a中使用YOLOv2算法对avi视频进行人体喝水行为检测,结果显示成功检测到目标。该算法基于全卷积网络,通过特征提取、锚框和损失函数优化实现。程序首先打乱并分割数据集,利用预训练的ResNet-50和YOLOv2网络结构进行训练,最后保存模型。
14 5
|
7天前
|
机器学习/深度学习 传感器 数据可视化
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
24 1
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
|
13天前
|
机器学习/深度学习 API 算法框架/工具
R语言深度学习:用keras神经网络回归模型预测时间序列数据
R语言深度学习:用keras神经网络回归模型预测时间序列数据
18 0
|
13天前
|
机器学习/深度学习 数据采集 TensorFlow
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
29 0
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别在自动驾驶系统中的应用研究
【4月更文挑战第28天】 随着人工智能技术的突飞猛进,深度学习在图像识别领域的应用已逐渐成熟,并在自动驾驶系统中扮演着至关重要的角色。本文聚焦于探讨深度学习模型如何优化自动驾驶车辆的图像识别过程,以及这些技术如何提高系统的整体性能和安全性。文中首先介绍了深度学习在图像处理中的基础理论,随后详细分析了卷积神经网络(CNN)在车辆环境感知中的应用,并提出了一种新型的融合算法,该算法能更有效地处理复杂环境下的图像数据。通过实验验证,本研究所提出的模型在多个公开数据集上表现出了优越的识别精度和实时性,为未来自动驾驶技术的发展提供了有价值的参考。
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第28天】 随着人工智能技术的飞速发展,深度学习已成为推动技术创新的核心动力之一。特别是在图像识别领域,深度学习技术通过模仿人类视觉系统的机制,实现了对复杂视觉信息的高效处理。本文旨在探讨深度学习技术在自动驾驶系统中图像识别的应用,重点分析卷积神经网络(CNN)的结构优化、训练策略以及在实际道路环境中的感知能力提升。此外,文章还讨论了目前面临的主要挑战和未来的发展趋势。
|
2天前
|
机器学习/深度学习 计算机视觉 网络架构
深度学习在图像识别中的应用与挑战
【4月更文挑战第28天】 随着人工智能技术的飞速发展,深度学习已经成为计算机视觉领域的核心动力之一。本文旨在探讨深度学习技术在图像识别任务中的应用及其面临的挑战。首先,我们将概述深度学习的基本原理和关键技术,包括卷积神经网络(CNN)和循环神经网络(RNN)。接着,文章将深入探讨深度学习在图像分类、目标检测以及语义分割等图像识别子领域中的具体应用案例。最后,我们讨论了目前该领域存在的一些主要挑战,如模型泛化能力、计算资源需求以及对抗性攻击,并对未来发展趋势提出展望。
|
2天前
|
机器学习/深度学习 安全 计算机视觉
深度学习在图像识别中的应用与挑战
【4月更文挑战第28天】 随着计算机视觉技术的飞速发展,深度学习已成为推动该领域进步的核心技术之一。本文旨在探讨深度学习在图像识别任务中的应用及其所面临的挑战。首先,概述了深度学习技术的基本概念和关键组成部分。接着,详细分析了卷积神经网络(CNN)在图像识别中的有效性以及常见的网络架构。然后,讨论了数据增强、迁移学习等优化策略对提高模型性能的影响。最后,指出了小样本学习、对抗性攻击等当前技术面临的主要挑战,并对未来研究方向进行了展望。
|
2天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
【4月更文挑战第27天】 随着计算机视觉技术的飞速发展,深度学习已成为推动图像识别领域前进的核心动力。本文将探讨深度学习技术在图像识别任务中的运用,包括卷积神经网络(CNN)的基础架构、数据增强的重要性以及迁移学习的实践意义。同时,文中还将分析目前面临的主要挑战,例如数据集偏差、对抗性攻击和模型泛化能力等关键问题,并提出可能的解决方案。通过综合评述,旨在为未来图像识别技术的发展提供参考方向。