基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真

简介: 本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```load mat\gnet.mat
load mat\yolov.mat
In_layer_Size = [224 224 3];
img_size = [224,224];
imgPath = 'Input/'; % 图像库路径
imgDir = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt = 0;
for i = 1:length(imgDir) % 遍历结构体就可以一一处理图片了
i
if mod(i,8)==1
figure
end
cnt = cnt+1;
subplot(2,4,cnt);
img = imread([imgPath imgDir(i).name]); %读取每张图片
I = imresize(img,In_layer_Size(1:2));
[bboxes,scores] = detect(detector2,I,'Threshold',0.4);
[Vs,Is] = max(scores);
I2 = I(bboxes(Is,2):bboxes(Is,2)+bboxes(Is,4),bboxes(Is,1):bboxes(Is,1)+bboxes(Is,3),:);
picture_resized = imresize(I2,img_size);

[label, Probability] = classify(net, picture_resized);
label
if isempty(bboxes)==0
I1              = insertObjectAnnotation(I,'rectangle',bboxes(Is,:),Vs);
else
I1              = I;
Vs              = 0;
end
imshow(I1)
if label=='YES'
   title([imgDir(i).name,'正常驾驶']);
else
   title([imgDir(i).name,'疲劳驾驶'],'color','r');
end

if cnt==8
   cnt=0;
end

end

```

4.算法理论概述
4.1疲劳检测理论概述
疲劳检测的原理是根据人体疲劳状态下的特征检测,和正常状态下的特征检测做对比。在做疲劳检测之前,首先需要分析人体在疲劳状态下与正常状态下的特征有哪些不同的的表现,这些不同的表现可以通过哪些数值具体的量化出来,然后通过这些量化后的不同数值来判断属于哪种行为;最后根据获取的各种行为综合判断属于疲劳状态或者正常状态。

     基于深度学习网络的疲劳驾驶检测算法是一种利用深度学习技术对驾驶员的疲劳状态进行自动检测的方法。基于深度学习网络的疲劳驾驶检测算法主要利用了深度学习模型强大的特征提取和分类能力。具体来说,该算法通过训练一个深度学习模型,使其能够学习到疲劳驾驶状态下驾驶员面部的特征变化,从而对驾驶员的疲劳状态进行自动检测。

该算法的训练过程主要包括以下步骤:

数据收集:首先需要收集大量的驾驶员面部图像数据,包括疲劳驾驶状态下的图像和非疲劳驾驶状态下的图像。

数据预处理:对收集到的图像数据进行预处理,包括图像裁剪、归一化、去噪等操作,以便于模型的训练。

模型训练:使用预处理后的图像数据训练一个深度学习模型,使其能够学习到疲劳驾驶状态下驾驶员面部的特征变化。

模型评估:使用测试集对训练好的模型进行评估,评估指标包括准确率、召回率等。

   基于深度学习网络的疲劳驾驶检测算法的数学公式主要涉及到深度学习模型的训练和推理过程。具体来说,该算法的训练过程可以通过以下公式表示:

   Loss=f(X,Y;θ)Loss = f(X, Y; \theta)Loss=f(X,Y;θ)

   其中,Loss表示损失函数,X表示输入的图像数据,Y表示对应的标签数据,θ表示模型的参数。f表示模型的前向传播函数,用于计算模型的输出。

在模型的推理过程中,给定一张输入图像,可以通过以下公式计算模型的输出:

Y^=f(X^;θ)\hat{Y} = f(\hat{X}; \theta)Y^=f(X^;θ)

其中,Y^表示模型的输出,X^表示输入的图像数据,θ表示已经训练好的模型参数。

   总之,基于深度学习网络的疲劳驾驶检测算法通过训练一个深度学习模型,使其能够学习到疲劳驾驶状态下驾驶员面部的特征变化,从而对驾驶员的疲劳状态进行自动检测。这种方法具有准确率高、鲁棒性强等优点,为疲劳驾驶检测提供了新的思路和方法。

4.2 本课题说明
基于 YOLOv2 和 GoogleNet 的疲劳驾驶检测算法的整体流程大致如下:首先,利用 YOLOv2 网络对输入的驾驶场景图像(通常是从车载摄像头获取的实时图像)进行目标检测,定位出图像中的驾驶员面部区域;然后,将检测到的驾驶员面部区域裁剪出来,并进行适当的预处理(如归一化、尺寸调整等)后输入到 GoogleNet 网络中,由 GoogleNet 对驾驶员的面部特征进行进一步的分析和提取,最终根据提取到的特征来判断驾驶员是否处于疲劳状态。

 基于YOLOv2 进行人脸检测是通过使用YOLOv2 模型对输入图像进行人脸目标检测,得到人脸的位置和大小信息。YOLOv2 是一种目标检测模型,通过卷积神经网络提取图像特征,并使用区域提议网络(Region Proposal Network,RPN)生成候选目标区域,最后对候选区域进行分类和回归,得到目标的位置和大小信息。       

   通过GoogleNet进行疲劳驾驶检测是通过使用GoogleNet模型对输入图像进行特征提取,然后利用这些特征判断驾驶员是否处于疲劳状态。GoogleNet是一种深度卷积神经网络模型,通过增加网络的深度和宽度,提高了模型的特征提取能力。利用GoogleNet提取的图像特征可以表示驾驶员面部的细节和表情变化,从而判断驾驶员是否处于疲劳状态。
相关文章
|
12天前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
8月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
327 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
8月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
200 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
8月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
273 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
11月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
11月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
11月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
11月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
下一篇
oss创建bucket