神器,轻松可视化Python程序调用流程

简介: 神器,轻松可视化Python程序调用流程

今天我们来分享一个 Python 领域的神级第三方库 -- pycallgraph,通过该库并结合 graphviz 工具,就可以非常方便的完成 Python 应用程序调用流程的可视化工作

我们先来看下效果图

怎么样,很是惊艳吧~

下面我们就来一起完成这个可视化过程

安装 graphviz 工具

生成图片的过程,是依赖工具 graphviz 的,我们先进行下载安装

下载地址

http://www.graphviz.org/download/

详细对于 graphviz 工具,大家应该也熟悉了,我们以前通过该工具进行过决策树的可视化工作,具体可以看这里

数据分析入门系列教程-决策树实战

上面的链接包含了详细的安装配置过程,这里就不再赘述了

实战

接下来我们还需要安装两个 Python 依赖库

pip install pycallgraph

下面我们先写一个基础的代码

from pycallgraph import PyCallGraph
from pycallgraph.output import GraphvizOutput
class Banana:
    def eat(self):
        pass
class Person:
    def __init__(self):
        self.no_bananas()
    def no_bananas(self):
        self.bananas = []
    def add_banana(self, banana):
        self.bananas.append(banana)
    def eat_bananas(self):
        [banana.eat() for banana in self.bananas]
        self.no_bananas()
def main():
    graphviz = GraphvizOutput()
    graphviz.output_file = 'basic.png'
    with PyCallGraph(output=graphviz):
        person = Person()
        for a in range(10):
            person.add_banana(Banana())
        person.eat_bananas()
if __name__ == '__main__':
    main()

代码比较简单,定义了两个简单类,主要 pycallgraph 的核心代码在 main 函数中,在 with 代码块下,把我们定义的代码执行一遍即可

运行上面的代码,会在当前目录下生成 basic.png 图片文件

从生成的图片可以非常清晰的看出整个代码的运行过程,从 main 代码块到各个类的初始化,可以说一目了然

我们再来一个复杂一点的例子

import re
from pycallgraph import PyCallGraph
from pycallgraph import Config
from pycallgraph.output import GraphvizOutput
def main():
    graphviz = GraphvizOutput()
    graphviz.output_file = 'regexp.png'
    config = Config(include_stdlib=True)
    with PyCallGraph(output=graphviz, config=config):
        reo = compile()
        match(reo)
def compile():
    return re.compile('^[abetors]*$')
def match(reo):
    [reo.match(a) for a in words()]
def words():
    return [
        'abbreviation',
        'abbreviations',
        'abettor',
        'abettors',
        'abilities',
        'ability',
        'abrasion',
        'abrasions',
        'abrasive',
        'abrasives',
    ]
if __name__ == '__main__':
    main()

代码同样不负责,不过在编译器内部是调用了 re 正则的,我们来看看最终生成的图片

可以看到整个代码过程复杂了很多,因为内部调用了很多正则内部函数等,但是整体还是非常清晰的

可以说这个神级第三方库,绝对是众多 Python 爱好者,尤其是刚刚入门 Python 领域的朋友的福音,当我们遇到某些不熟悉的较为复杂的代码块时,不妨使用该库来尝试一下可视化,看看能不能从中爆发灵感呢~

好了,这就是今天分享的全部内容,喜欢就点个吧~

目录
打赏
0
0
0
0
22
分享
相关文章
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
在Python程序中实现LevelDB的海量key的分批次扫描
通过本文的步骤,您可以在Python程序中实现对LevelDB海量key的分批次扫描。这样不仅能够有效地管理大规模数据,还可以避免一次性加载过多数据到内存中,提高程序的性能和稳定性。希望这篇指南能为您的开发工作提供实用的帮助。
77 28
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
Python程序的安全逆向(关于我的OPENAI的APIkey是如何被盗的)
本文介绍了如何使用C语言编写一个简单的文件加解密程序,并讨论了如何为编译后的软件添加图标。此外,文章还探讨了Python的.pyc、.pyd等文件的原理,以及如何生成和使用.pyd文件来增强代码的安全性。通过视频和教程,作者详细讲解了生成.pyd文件的过程,并分享了逆向分析.pyd文件的方法。最后,文章提到可以通过定制Python解释器来进一步保护源代码。
90 6
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
592 7
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
3月前
|
使用Python实现自动化邮件通知:当长时程序运行结束时
本文介绍了如何使用Python实现自动化邮件通知功能,当长时间运行的程序完成后自动发送邮件通知。主要内容包括:项目背景、设置SMTP服务、编写邮件发送函数、连接SMTP服务器、发送邮件及异常处理等步骤。通过这些步骤,可以有效提高工作效率,避免长时间等待程序结果。
124 9
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
151 5
Python编程入门:打造你的第一个程序
本文旨在为初学者提供Python编程的初步指导,通过介绍Python语言的基础概念、开发环境的搭建以及一个简单的代码示例,帮助读者快速入门。文章将引导你理解编程思维,学会如何编写、运行和调试Python代码,从而开启编程之旅。
80 2

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等