【计算机视觉】目标检测中Faster R-CNN、R-FCN、YOLO、SSD等算法的讲解(图文解释 超详细必看)

简介: 【计算机视觉】目标检测中Faster R-CNN、R-FCN、YOLO、SSD等算法的讲解(图文解释 超详细必看)

觉得有帮助请点赞关注收藏~~~

一、基于候选区域的目标检测算法

基于候选区域的深度卷积神经网络(Region-based Convolutional Neural Networks)是一种将深度卷积神经网络和区域推荐相结合的物体检测方法,也可以叫做两阶段目标检测算法。第一阶段完成区域框的推荐,第二阶段是对区域框进行目标识别。

1:Faster R-CNN目标检测算法

利用选择性搜索算法在图像中提取数千个候选区域,然后利用卷积神经网络对每个候选区域进行目标特征的提取,接着用每个候选区域提取到的特征来训练支持向量机分类器对候选区域进行分类,最后依据每个区域的分类得分使用非极大值抑制算法和线性回归算法优化出最红的目标位置。R-CNN算法的训练被分成多个阶段,包括分开训练提取特征的卷积神经网络,用于分类的分类器和分类器的训练不相关,这影响了目标检测的准确率。

Faster R-CNN方法中最重要的是使用候选区域推荐网络获得准确的候选区域框,大大加快了目标检测速度,并且将选择区域框的过程嵌入卷积神经网络中,与网络共享卷积层的参数,从而提高网络的训练和测试速度,候选区域推荐网络的核心思想是使用卷积神经网络直接产生候选区域框,使用的方法本质上就是滑动窗口。

2:R-FCN目标检测算法

R-FCN方法的整体结构全部由卷积神经网络组成,为了给全卷积神经网络引入平移变化,用专门的卷积层构建了位置敏感分数地图,每一个空间敏感地图对感兴趣区域的相对空间位置的信息进行了编码,并插入感兴趣区域池化层来接受整合信息,用于监管这些分数地图,从而给卷积神经网络加入了平移变化。R-FCN 在与区域推荐网络共享的卷积层后面多增加了1个卷积层,最后1个卷积层的输出从整幅图像的卷积响应图像中分割出感兴趣区域的卷积响应图像,R-FCN最后1个卷积层在整幅图像上为每类生成k的平方个位置敏感分数图

二、基于回归的目标检测算法

目前在深度卷积神经网络的物体检测方面,Faster R-CNN是应用比较广泛的检测方法之一,但是由于网络结构参数的计算量大,导致其检测速度慢,从而不能达到某些应用领域对于实时检测的要求。尤其对于嵌入式系统,所需要的计算时间太长。同样,许多方法都是以牺牲检测精度为代价来换取检测速度,为了解决精度与速度并存的问题,YOLO与SSD的方法应运而生,此类方法使用基于回归方法的思想,直接在输入图像的多个位置中回归出这个位置的区域框坐标和物体类别。

1:YOLO目标检测算法

YOLO是端到端的物体检测深度卷积神经网络,与Faster R-CNN的区别在于YOLO一次性预测多个候选框,并直接在输出层回归物体位置区域和区域内物体所属类别,YOLO最大的优势就是速度快,可满足端到端训练和实时检测要求

YOLO方法的物体检测过程为:首先将输入的图像划分成7×7个小网格,在每个小网格子里预测出2个区域框,从而可在整张图像上预测2×7×7个目标物体的区域框,利用交并比衡量这些区域框与图像上的真实区域框的差距,得到可能性高的候选区域框,最后使用非极大值抑制去掉这多余的区域框,YOLO整体训练方法过程较为简单,不需要中间的推荐区域步骤,直接通过网络回归完成物体的定位与分类,但是精度较差

2:SSD目标检测算法

SSD获取目标位置和类别的方式与YOLO方法类似,而相比与YOLO是在整张特征图上划分的7×7的网格内回归,YOLO对于目标物体的定位并不精确,所以为了解决精确问题,SSD利用类似Faster R-CNN推荐区域得分机制实现精确定位,与Faster R-CNN的推荐候选框得分机制不同,SSD在多个特征图上进行处理,SSD利用得分机制直接进行分类和区域框回归,在保证速度的同时,SSD检验结果的精度与Faster R-CNN相差不多,从而能够满足实时检测与高精度的要求

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
4月前
|
监控 安全 算法
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
|
5月前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
670 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
4月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
12月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
345 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
8月前
|
机器学习/深度学习 运维 监控
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
713 1
|
7月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
199 0
|
8月前
|
机器学习/深度学习 监控 算法
面向办公室屏幕监控系统的改进型四叉树屏幕变化检测算法研究
本文提出一种改进型四叉树数据结构模型,用于优化办公室屏幕监控系统。通过动态阈值调节、变化优先级索引及增量更新策略,显著降低计算复杂度并提升实时响应能力。实验表明,该算法在典型企业环境中将屏幕变化检测效率提升40%以上,同时减少资源消耗。其应用场景涵盖安全审计、工作效能分析及远程协作优化等,未来可结合深度学习实现更智能化的功能。
139 0
|
11月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
11月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
12月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。

热门文章

最新文章