PyTorch深度学习中卷积神经网络(CNN)的讲解及图像处理实战(超详细 附源码)

简介: PyTorch深度学习中卷积神经网络(CNN)的讲解及图像处理实战(超详细 附源码)

需要源码和图片集请点赞关注收藏后评论区留言私信~~~

一、卷积神经网络简介

卷积神经网络是深度学习中最常用的一种网络结构,它作为一种深度神经网络结构,擅长处理图像相关的问题,能够将目标图像降维并提取特征,以进行分类识别等运算

二、卷积神经网络核心思想

1:局部感知

图像的局部像素之间往往存在着较强的相关性,局部感知正是利用了这一特性,每次只针对图像的局部信息进行感知,得到特征图,而后在更深层次的网络中继续对所得特征图的局部信息进行高维感知,以此从局部到整体来获取图像信息,使用局部感知时,神经元只和下一层的部分神经元进行连接,每一个局部感知区域都对应着一个卷积核,此外剧本感知大大降低了网络的参数。

2:权值共享

类似于局部感知,同样从像素相关性和参数缩减方面进行考虑。它实现的是多层像素共享一个卷积核的功能,之所以可以这样处理图像,是因为像素相关性高的局部区域往往具有相同的纹理特征,可以用同一个卷积核来学习这部分特征

3:下采样

在实际工作中,通常需要下采样技术对各层特征图进行压缩处理,减少后续网络的权重参数,减少过拟合问题,便于提起图像的高维特征

三、卷积神经网络结构

1:输入层

2:卷积层

基于图像的空间局部相关性分别抽取图像局部特征,通过将这些局部特征进行连接,形成整体特征

单通道与多通道卷积层示意图如下

3:激励层

用于将卷积层的输出结果进行非线性映射

4:池化层

其功能在于降低数据量,减少参数数量,从而预防网络过拟合。分为最大池化与平均池化

5:全连接层

与传统神经网络相同,使用一个或多个神经元来输出预测数据

四、CNN处理图像实战

原图片如下

转换为灰度图效果如下 转换时只需要在imshow中指定输出的颜色格式即可变换

将图像背景转换为蓝色

转换为黄色

BrBG颜色效果如下

五、代码

部分源码如下

import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F
from PIL import Image
import matplotlib.pyplot as plt
import pylab
############################################get_ipython().run_line_magic('matplotlib', 'inline')
im = Image.open(r'C:\Users.jpg').convert('L')   # 读入一张灰度图的图片
im = np.array(im, dtype='float32')    # 将其转换为一个矩阵
am = np.array([[1,2,3],[4,5,6],[7,8,9]])
print(im)
print(am)
# 可视化图片
plt.imshow(im.astype('uint8'), cmap='gray')
pylab.show()
# 将图片矩阵转化为 pytorch tensor,并适配卷积输入的要求
print(am.shape)
im = torch.from_numpy(im.reshape((1, 1, im.shape[0], im.shape[1])))
am = torch.from_numpy(am.reshape((1, 1, am.shape[0], am.shape[1])))
print(im)
print(am)
# 使用 nn.Conv2d
conv1 = nn.Conv2d(1, 1, 3, bias=False)    # 输入通道数,输出通道数,核大小,定义卷积
sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32')   # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3))   # 适配卷积的输入输出
conv1.weight.data = torch.from_numpy(sobel_kernel)  # 给卷积的 kernel 赋值
edge1 = conv1(Variable(im))         # 作用在图片上
#edge2 = conv1(Variable(am))
edge1 = edge1.data.squeeze().numpy()      # 将输出转换为图片的格式
#edge2 = edge2.data.squeeze().numpy()
plt.imsh
# 使用 F.conv2d
sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32')   # 定义轮廓检测算子
sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3))         # 适配卷积的输入输出
weight = Variable(torch.from_numpy(sobel_kernel))
edge2 = F.conv2d(Variable(im), weight)          # 作用在图片上
edge2 = edge2.data.squeeze().numpy()          # 将输出转换为图片的格式
pw()
# 使用 nn.MaxPool2d
pool1 = nn.MaxPool2d(2, 2)
print('before max pool, image shape: {} x {}'.format(im.shape[2], im.shape[3]))
small_im1 = pool1(Variable(im))
small_im1 = small_im1.data.squeeze().numpy()
print('after max pool, image shape: {} x {} '.format(small_im1.shape[0], small_im1.shape[1]))
pl)
# F.max_pool2d
print('before max pool, image shape: {} x {}'.format(im.shape[2], im.shape[3]))
small_im2 = F.max_pool2d(Variable(im), 2, 2)
small_im2 = small_im2.data.squeeze().numpy()
print('after max pool, image shape: {} x {} '.format(small_im1.shape[0], small_im1.shape[1]))
ow()
#输入数据
cs = np.array([[0,0,0,1,0,1,2],[0,1,1,1,1,0,0],[0,1,1,2,2,0,1],[0,0,1,2,2,1,1],[0,0,0,1,1,0,1],[0,0,2,1,2,1,0],[1,0,1,2,0,0,1]],dtype='float32')
cs = torch.from_numpy(cs.reshape((1, 1, cs.shape[0], cs.shape[1])))
conv1 = nn.Conv2d(1, 1, 3, bias=False)
# 定义卷积核
0,0,0,0]],[[0,0,0,0,0,0,0],[0,2,1,2,0,1,0],[0,1,2,0,0,1,0],[0,0,1,0,2,1,0],[0,2,0,1,2,0,0],[0,1,0,0,1,0,0],[0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0],[0,0,0,1,2,0,0],[0,0,2,1,0,0,0],[0,1,0,0,0,1,0],[0,2,0,0,0,2,0],[0,1,1,2,1,0,0],[0,0,0,0,0,0,0]]],dtype='float32')
cs = torch.from_numpy(cs.reshape(1,cs.shape[0],cs.shape[1],cs.shape[2]))
conv2 = nn.Conv2d( in_channels=3, out_channels=2, kernel_size=3, stride=2, padding=0,bias=True)
# 定义卷积核
conv2_kernel = np.array([[[[-1, 0, 1], [0, 0, 0], [1, -1, 1]],[[-1,1,1],[0,1,0],[1,0,0]],[[1,-1,1],[-1,1,0],[0,1,0]]],[[[0, 0, 1], [1, -1, 1], [0, 0, 1]],[[1,0,1],[-1,0,-1],[0,-1,0]],[[0,1,1],[-1,-1,0],[1,1,0]]]], dtype='float32')
# 适配卷积的输入输出
conv2_kernel = conv2_kernel.reshape((2, 3, 3, 3))
pylab.show()
# 定义偏置项
'''
conv2_bias = np.array([1,0])
conv2.weight.data = torch.from_numpy(conv2_kernel)
conv2.bias.data = torch.from_numpy(conv2_bias)
final2 = conv2(Variable(cs))
print(final2)
'''

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
206 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
9天前
|
机器学习/深度学习 自然语言处理 算法
PyTorch PINN实战:用深度学习求解微分方程
物理信息神经网络(PINN)是一种将深度学习与物理定律结合的创新方法,特别适用于微分方程求解。传统神经网络依赖大规模标记数据,而PINN通过将微分方程约束嵌入损失函数,显著提高数据效率。它能在流体动力学、量子力学等领域实现高效建模,弥补了传统数值方法在高维复杂问题上的不足。尽管计算成本较高且对超参数敏感,PINN仍展现出强大的泛化能力和鲁棒性,为科学计算提供了新路径。文章详细介绍了PINN的工作原理、技术优势及局限性,并通过Python代码演示了其在微分方程求解中的应用,验证了其与解析解的高度一致性。
34 5
PyTorch PINN实战:用深度学习求解微分方程
|
2月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
210 10
|
3月前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
186 10
|
4月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
199 1
|
2月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
252 66
|
27天前
|
机器学习/深度学习 算法 安全
用PyTorch从零构建 DeepSeek R1:模型架构和分步训练详解
本文详细介绍了DeepSeek R1模型的构建过程,涵盖从基础模型选型到多阶段训练流程,再到关键技术如强化学习、拒绝采样和知识蒸馏的应用。
226 3
用PyTorch从零构建 DeepSeek R1:模型架构和分步训练详解
|
5月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
768 2

热门文章

最新文章