基于FPGA的图像直方图统计实现,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像直方图统计实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览
1.jpeg
2.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
基于FPGA的图像直方图统计实现主要是通过利用FPGA的并行处理能力,对图像中的每个像素进行统计,以计算出每个灰度级出现的次数或概率。这个过程涉及到对图像数据的快速读取、处理和存储,以及时序控制和电路设计。下面详细介绍其实现过程:

3.1、图像数据传输
我们需要通过接口板将图像数据传输到FPGA芯片中。这个过程通常包括读取本地文件夹中的图像数据、将数据传输到FPGA中。

3.2、直方图统计算法
在图像数据传输完成后,我们需要设计一个直方图统计算法,以对图像中的每个像素进行统计。这个算法通常包括以下步骤:

设置一个数组,用于存储每个灰度级出现的次数或概率。
遍历图像中的每个像素,对每个像素的灰度值进行判断,然后对相应的数组元素进行+1操作。
完成遍历后,数组中的每个元素就代表了图像中对应灰度级出现的次数或概率。
3.3、时序控制和电路设计
最后,我们需要设计具体的时序和电路,以正确地将直方图进行统计。这个过程中,我们需要考虑如何充分利用FPGA的并行处理能力,以提高统计的效率。同时,我们还需要注意如何正确地对像素数据进行读取、处理和存储,以保证统计结果的准确性。

   总的来说,基于FPGA的图像直方图统计实现需要结合具体的硬件平台和图像处理算法进行设计。通过优化数据传输、算法实现和电路设计等方面,可以实现高效的图像直方图统计功能。

4.部分核心程序

````timescale 1ns / 1ps
module test_image;

reg i_clk;
reg i_rst;
reg i_ready;
reg [7:0] Tmp[0:100000];
reg [7:0] datas;
wire[15:0]o_cnt1,o_cnt2,o_cnt3,o_cnt4,o_cnt5,o_cnt6,o_cnt7,o_cnt8,o_cnt9,o_cnt10,o_cnt11,o_cnt12,o_cnt13,o_cnt14,o_cnt15,o_cnt16,o_cnt17,o_cnt18,o_cnt19,o_cnt20,o_cnt21,o_cnt22,o_cnt23,o_cnt24,o_cnt25;

integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\code2

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code2\data.bmp","rb");
dat = $fread(Tmp,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;
i_ready=0;

1000;

i_ready=1;
i_rst=0;

655360;

i_ready=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
datas<=Tmp[jj];
jj<=jj+1;
end

im_hist im_hist_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_ready (i_ready),
.i_xin (datas),
.o_cnt1 (o_cnt1),
.o_cnt2 (o_cnt2),
.o_cnt3 (o_cnt3),
.o_cnt4 (o_cnt4),
.o_cnt5 (o_cnt5),
.o_cnt6 (o_cnt6),
.o_cnt7 (o_cnt7),
.o_cnt8 (o_cnt8),
.o_cnt9 (o_cnt9),
.o_cnt10 (o_cnt10),
.o_cnt11 (o_cnt11),
.o_cnt12 (o_cnt12),
.o_cnt13 (o_cnt13),
.o_cnt14 (o_cnt14),
.o_cnt15 (o_cnt15),
.o_cnt16 (o_cnt16),
.o_cnt17 (o_cnt17),
.o_cnt18 (o_cnt18),
.o_cnt19 (o_cnt19),
.o_cnt20 (o_cnt20),
.o_cnt21 (o_cnt21),
.o_cnt22 (o_cnt22),
.o_cnt23 (o_cnt23),
.o_cnt24 (o_cnt24),
.o_cnt25 (o_cnt25)

);

integer fout1;
integer fout2;
integer fout3;
integer fout4;
.................................................................
endmodule

```

相关文章
|
3月前
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
|
29天前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
266 2
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
29天前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
155 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
29天前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
300 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
|
29天前
|
缓存 数据挖掘 测试技术
目标检测实战(三):YOLO-Nano训练、测试、验证详细步骤
本文介绍了YOLO-Nano在目标检测中的训练、测试及验证步骤。YOLO-Nano是一个轻量级目标检测模型,使用ShuffleNet-v2作为主干网络,结合FPN+PAN特征金字塔和NanoDet的检测头。文章详细说明了训练前的准备、源代码下载、数据集准备、参数调整、模型测试、FPS测试、VOC-map测试、模型训练、模型测试和验证等步骤,旨在帮助开发者高效实现目标检测任务。
40 0
目标检测实战(三):YOLO-Nano训练、测试、验证详细步骤
|
29天前
|
计算机视觉 异构计算
目标检测实战(四):YOLOV4-Tiny 源码训练、测试、验证详细步骤
这篇文章详细介绍了使用YOLOv4-Tiny进行目标检测的实战步骤,包括下载源码和权重文件、配置编译环境、进行简单测试、训练VOC数据集、生成训练文件、准备训练、开始训练以及多GPU训练的步骤。文章还提供了相应的代码示例,帮助读者理解和实践YOLOv4-Tiny模型的训练和测试过程。
85 0
|
2月前
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。
|
3月前
|
Web App开发 敏捷开发 测试技术
自动化测试之美:使用Selenium WebDriver进行网页功能验证
【8月更文挑战第29天】在数字时代,软件质量是企业竞争力的关键。本文将深入探讨如何通过Selenium WebDriver实现自动化测试,确保网页应用的可靠性和性能。我们将从基础设置到编写测试用例,逐步引导读者掌握这一强大的测试工具,同时分享实战经验,让测试不再是开发的负担,而是质量保证的利器。
|
3月前
|
SQL 安全 测试技术
软件测试的哲学:探索、验证与持续改进
【8月更文挑战第29天】本文将深入探讨软件测试的核心理念,从测试的本质和目的出发,阐述测试不仅是技术活动,更是一种思考方式。我们将一起探索如何通过测试来验证软件的正确性,确保其满足用户需求,并在此基础上不断改进。文章将分享实用的测试策略和方法,包括代码示例,旨在帮助读者更好地理解和实践软件测试的艺术。
|
3月前
|
测试技术
单元测试问题之在单元测试中,方法的返回值或异常,如何验证
单元测试问题之在单元测试中,方法的返回值或异常,如何验证
下一篇
无影云桌面