基于HOG特征提取和GRNN神经网络的人脸表情识别算法matlab仿真,测试使用JAFFE表情数据库

简介: 基于HOG特征提取和GRNN神经网络的人脸表情识别算法matlab仿真,测试使用JAFFE表情数据库

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
该算法主要由两个部分组成:HOG特征提取和GRNN神经网络。下面将详细介绍这两个部分的原理和数学公式。

1.HOG特征提取
HOG(Histogram of Oriented Gradients)是一种局部特征描述子,它通过对图像局部区域的梯度方向进行统计,提取出图像的结构信息。HOG特征提取主要分为以下几个步骤:

(1)图像预处理

首先,将图像转换为灰度图像,然后对其进行归一化处理,以提高特征的鲁棒性。

(2)计算梯度

使用[-1,0,1]的梯度算子在图像的x和y方向上进行卷积,计算图像的梯度和梯度方向。

(3)划分单元格

将图像划分为若干个小的单元格,并在每个单元格内统计梯度方向直方图。

(4)合并块特征

将相邻的单元格组成一个块,并将块内的特征进行合并,得到块特征。

(5)归一化特征

对块特征进行归一化处理,以提高特征的鲁棒性。

最终得到的HOG特征向量可以用于描述图像的结构信息。

2.GRNN神经网络
GRNN(Generalized Regression Neural Network)是一种基于多层感知机的回归模型,它可以将输入映射到一个连续的输出空间。GRNN神经网络主要分为以下几个部分:

(1)输入层

输入层接收HOG特征向量作为输入。

(2)隐藏层

    隐藏层使用Sigmoid函数作为激活函数,将输入映射到一个非线性的隐藏层空间。隐藏层的输出可以表示为:

h=σ(Wx+b)

其中,W是权重矩阵,b是偏置向量,σ是Sigmoid函数。

(3)输出层

输出层使用线性函数将隐藏层映射到输出空间,输出层的输出可以表示为:

y=Wh+b

其中,W是权重矩阵,b是偏置向量。

(4)损失函数和优化算法

   GRNN神经网络的损失函数通常采用均方误差(MSE),可以使用梯度下降算法优化网络参数。对于每个样本,损失函数可以表示为:

L=21(y−y^)2

   其中,y是网络的输出,y^是样本的真实标签。通过最小化损失函数,可以优化网络参数。在训练过程中,通常采用反向传播算法计算梯度并更新网络参数。

3.JAFFE表情数据库
JAFFE表情数据库是一个用于表情识别的研究数据集,由日本女演员Jaffe于1998年捐赠给加州大学圣地亚哥分校。

    该数据集包含了213张面部图片,每个人做出了7类表情,包括愤怒、厌恶、恐惧、快乐、哀伤、惊讶和中性。每组大约有20张样图,可以用来训练和测试面部表情识别的算法。

    JAFFE数据集在计算机视觉领域的情感计算、表情识别和人机交互等方面有着重要的应用价值。它提供了一个标准化的面部表情数据集,可以用于研究表情识别算法的性能和可靠性,为实现面部表情识别的研究提供了基础。

   使用JAFFE数据集需要一些前置条件,如熟悉基本的Python编程和图像处理技术,研究者需要利用相关的机器学习和计算机视觉算法来识别和分类面部表情。

   总之,JAFFE数据集是一个标准和经典的表情识别数据集,对于研究表情识别算法的人来说是一个非常好的选择。

4.部分核心程序

NAME = '悲伤';%测试则对所有图片进行测试

p0 = ['JAFFE\',NAME];
dt = dir(p0);
p  = [dt.name];
err=[];
correct1 = 0;
figure;
for k = 1:length(dt)-3
    k
    path = dt(k+3,1).name;
    I0      = imread([ 'JAFFE\',NAME,'\',path]); 
    [R,C,K] = size(I0);

    if K == 1
       I1 = I0; 
    else
       I1 = rgb2gray(I0);  
    end
    %特征提取
    Hog_Dat1 = func_feature(I1);

    FF2 = sim(net,Hog_Dat1);

    subplot(5,6,k);
    imshow(I0);

    if round(FF2) == 1
       title('悲伤');
       correct1 = correct1+1;
    end
    if round(FF2) == 2
       title('高兴');
    end
    if round(FF2) == 3
       title('害怕');
    end
    if round(FF2) == 4
       title('惊讶');
    end
    if round(FF2) == 5
       title('生气');
    end
    if round(FF2) == 6
       title('厌恶');
    end
    if round(FF2) == 7
       title('中立');
    end

    pause(0.2);
end
err=[err,correct1/(length(dt)-3)];
.......................................................................
%%
NAME = '中立';%测试则对所有图片进行测试

p0 = ['JAFFE\',NAME];
dt = dir(p0);
p  = [dt.name];

correct1 = 0;
figure;
for k = 1:length(dt)-3
    k
    path = dt(k+3,1).name;
    I0      = imread([ 'JAFFE\',NAME,'\',path]); 
    [R,C,K] = size(I0);

    if K == 1
       I1 = I0; 
    else
       I1 = rgb2gray(I0);  
    end
    %特征提取
    Hog_Dat1 = func_feature(I1);

    FF2 = sim(net,Hog_Dat1);

    subplot(5,6,k);
    imshow(I0);

    if round(FF2) == 1
       title('悲伤');

    end
    if round(FF2) == 2
       title('高兴');
    end
    if round(FF2) == 3
       title('害怕');
    end
    if round(FF2) == 4
       title('惊讶');
    end
    if round(FF2) == 5
       title('生气');
    end
    if round(FF2) == 6
       title('厌恶');
    end
    if round(FF2) == 7
       title('中立');
       correct1 = correct1+1;
    end

    pause(0.2);
end

err=[err,correct1/(length(dt)-3)];

figure;
bar(100*err)
xlabel('1:悲伤, 2:高兴, 3:害怕, 4:惊讶, 5:生气, 6:厌恶, 6:中立');
ylabel('情绪识别率%');
相关文章
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
86 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
10天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
54 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
36 2
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。