基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真

简介: 本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):
1.jpeg
2.jpeg
3.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
在现代无线通信系统中,多输入多输出(Multiple-Input Multiple-Output, MIMO)技术是提高频谱效率和数据传输速率的关键。然而,随着天线数量的增加,全数字预编码器的设计变得非常复杂且成本高昂。为了解决这一问题,混合预编码器结合了模拟域和数字域的处理,既保持了良好的性能又降低了硬件复杂度。交替最小化(Alternating Minimization, AltMin)是一种迭代优化方法,它通过交替优化不同的变量来逼近全局最优解。

   考虑一个具有Nt​根发射天线和Nr​根接收天线的MIMO系统,其中每个天线阵列连接到一个射频链路(RF chain)。假设系统使用混合预编码结构,发射端有NRF​个RF链路,接收端有NBB​个基带处理单元。混合预编码可以表示为:

1af5570e7fa3909d959991fb099c024d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

PE-AltMin算法流程图如下图所示:

2e9230e486ab954a00b7908adb9fdb6b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   PE-AltMin算法通过交替最小化的方法,逐步优化混合预编码器和组合器,以达到最小化均方误差的目的。这种方法不仅能够有效地降低硬件复杂度,还能提供接近全数字预编码的性能。尽管算法在理论上较为复杂,但在实际应用中表现出了良好的鲁棒性和收敛性。

3.MATLAB核心程序
```SNR_dB = -35:5:5;
SNR = 10.^(SNR_dB./10);
realization = 100;
smax = length(SNR);% enable the parallel

for reali = 1:realization
reali
[ FRF, FBB ] = PE_AltMin( Fopt(:,:,reali), NRF);
FBB = sqrt(Ns) FBB / norm(FRF FBB,'fro');
[ WRF, WBB ] = PE_AltMin( Wopt(:,:,reali), NRF);
for s = 1:smax
R(s,reali) = log2(det(eye(Ns) + SNR(s)/Ns pinv(WRF WBB) H(:,:,reali) FRF FBB FBB' FRF' H(:,:,reali)' WRF WBB));
end
end
plot(SNR_dB,sum(R,2)/realization,'g-->','LineWidth',1.5);
% plot(SNR_dB,sum(R,2)/realization,'Marker','>','LineWidth',1.5,'Color',[0 0.447058826684952 0.74117648601532]);
grid on
hold on
if SEL == 1
save snrns2.mat SNR_dB R realization
end
if SEL == 2
save snrns4.mat SNR_dB R realization
end
if SEL == 3
save snrns8.mat SNR_dB R realization
end
0X_072m
```

相关文章
|
3月前
|
算法 5G 数据安全/隐私保护
大规模MIMO通信系统信道估计matlab性能仿真,对比LS,OMP,MOMP以及CoSaMP
本文介绍了大规模MIMO系统中的信道估计方法,包括最小二乘法(LS)、正交匹配追踪(OMP)、多正交匹配追踪(MOMP)和压缩感知算法CoSaMP。展示了MATLAB 2022a仿真的结果,验证了不同算法在信道估计中的表现。最小二乘法适用于非稀疏信道,而OMP、MOMP和CoSaMP更适合稀疏信道。MATLAB核心程序实现了这些算法并进行了性能对比。以下是部分
251 84
|
22天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
42 3
|
2月前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
2月前
|
数据采集 算法 5G
基于稀疏CoSaMP算法的大规模MIMO信道估计matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
该研究采用MATLAB 2022a仿真大规模MIMO系统中的信道估计,利用压缩感知技术克服传统方法的高开销问题。在稀疏信号恢复理论基础上,通过CoSaMP等算法实现高效信道估计。核心程序对比了LS、OMP、NOMP及CoSaMP等多种算法的均方误差(MSE),验证其在不同信噪比下的性能。仿真结果显示,稀疏CoSaMP表现优异。
62 2
|
3月前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
92 1
|
4月前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
104 2
|
4月前
|
算法 5G vr&ar
基于1bitDAC的MU-MIMO的非线性预编码算法matlab性能仿真
在现代无线通信中,1-bit DAC的非线性预编码技术应用于MU-MIMO系统,旨在降低成本与能耗。本文采用MATLAB 2022a版本,深入探讨此技术,并通过算法运行效果图展示性能。核心代码支持中文注释与操作指导。理论部分包括信号量化、符号最大化准则,并对比ZF、WF、MRT及ADMM等算法,揭示了在1-bit量化条件下如何优化预编码以提升系统性能。
|
5月前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的预编码matlab性能仿真
**摘要** 本文展示了在MATLAB2022a中运行的无水印预编码算法效果。核心程序采用详细中文注释,涉及MIMO系统中关键的MMSE和量化预编码技术。MMSE准则追求信号估计的准确性,通过利用信道状态信息优化发射,减少干扰,适合高容量需求;而量化准则结合格雷码量化,将连续信号映射至离散集合,简化硬件实现,适用于功耗敏感场景,但会引入量化误差。两者权衡了性能与实现复杂度。
|
算法 5G
基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真
基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真
|
传感器 数据采集 算法
移动通信系统的LMS自适应波束成形技术matlab仿真
移动通信系统的LMS自适应波束成形技术matlab仿真