PSO-LSTM回归预测 | Matlab粒子群优化长短时记忆网络回归预测

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: PSO-LSTM回归预测 | Matlab粒子群优化长短时记忆网络回归预测
+关注继续查看

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在过去的几十年中,风能作为一种可再生能源得到了广泛的关注和应用。随着风电场的不断增多,对于风电功率的准确预测变得越来越重要。台风是一种常见的天气现象,其强风和降雨对风电场的运行产生了直接影响。因此,准确预测台风期间的风电功率对于风电场的运营和管理至关重要。

长短记忆神经网络(LSTM)是一种常用的深度学习模型,已被广泛应用于时间序列预测问题。然而,传统的LSTM模型在处理复杂的多变量输入时存在一些限制。为了克服这些限制,本文提出了一种基于粒子群算法(PSO)优化的LSTM模型(PSO-LSTM),用于台风期间风电功率的多输入单输出预测。

PSO-LSTM模型的主要思想是通过使用PSO算法来自动调整LSTM模型的超参数,以提高预测性能。PSO算法是一种启发式优化算法,模拟了鸟群觅食的行为。它通过不断更新粒子的位置和速度,以寻找最优解。在PSO-LSTM模型中,每个粒子代表一个LSTM模型的超参数组合,目标是找到最佳的超参数组合,以最小化预测误差。

为了验证PSO-LSTM模型的性能,我们使用了来自某个风电场的实际风电功率数据集。我们将数据集分为训练集和测试集,其中训练集用于训练PSO-LSTM模型,而测试集用于评估其预测性能。与传统的LSTM模型相比,PSO-LSTM模型在预测台风期间的风电功率时表现出更高的准确性和稳定性。

本文的实验结果表明,PSO-LSTM模型可以有效地预测台风期间的风电功率。通过使用PSO算法优化LSTM模型的超参数,PSO-LSTM模型能够更好地捕捉到台风对风电场的影响,从而提高预测的准确性。这对于风电场的运营和管理具有重要的实际意义,可以帮助风电场提前做好准备,减少损失和风险。

总之,基于粒子群算法优化的长短记忆神经网络(PSO-LSTM)是一种有效的方法,用于台风期间风电功率的多输入单输出预测。未来的研究可以进一步探索如何进一步改进PSO-LSTM模型的性能,并将其应用于其他相关领域的预测问题。

📣 部分代码

% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1    for i=1:dim        ub_i=ub(i);        lb_i=lb(i);        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;    endend

⛳️ 运行结果

image

image

image


🔗 参考文献

[1] 顾乾晖,胡翌,涂振宇.基于PSO-SVR-LSTM水位预测模型研究[J].江西水利科技, 2021, 47(4):7.

[2] 唐晓灵,刘嘉敏.基于PSO-LSTM网络模型的建筑碳排放峰值预测[J].科技管理研究, 2023, 43(1):191-198.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1月前
|
存储 缓存 网络协议
深入了解DPDK:如何优化网络包处理性能(下)
深入了解DPDK:如何优化网络包处理性能
|
1月前
|
Linux API 调度
深入了解DPDK:如何优化网络包处理性能(上)
深入了解DPDK:如何优化网络包处理性能
深入了解DPDK:如何优化网络包处理性能(上)
|
2月前
|
机器学习/深度学习 数据采集 算法
m基于GA-LSTM遗传优化长短期记忆网络的电力负荷数据预测算法matlab仿真
m基于GA-LSTM遗传优化长短期记忆网络的电力负荷数据预测算法matlab仿真
43 4
|
2月前
|
存储 网络协议 调度
淘宝移动端统一网络库的架构演进和弱网优化技术实践
本文将介绍淘宝 APP 统一网络库演进的过程,讲述如何围绕体验持续构建南北向从监测到加速一体化的终端网络架构,通过构建 NPM 弱网诊断感知能力,落地原生多通道技术/多协议择优调度手段,贴合厂商附能网络请求加速,实现去 SPDY 及规模化 IPv6/H3 协议簇的平滑过渡,为用户提供弱网更好、好网更优的 APP 加载浏览体验,支撑业务创造更多的可能性。
128 0
|
2月前
|
Kubernetes 网络虚拟化 Perl
k8s常用的网络插件优化方案|干货
k8s常用的网络插件优化方案|干货
|
2月前
|
Kubernetes Perl 容器
如何优化k8s网络插件?
如何优化k8s网络插件?
|
3月前
|
机器学习/深度学习 传感器 算法
AO-LSTM回归预测 | Matlab天鹰优化长短时记忆网络回归预测
AO-LSTM回归预测 | Matlab天鹰优化长短时记忆网络回归预测
|
3月前
|
机器学习/深度学习 传感器 算法
GA-LSTM回归预测 | Matlab遗传算法优化长短时记忆网络回归预测
GA-LSTM回归预测 | Matlab遗传算法优化长短时记忆网络回归预测
|
3月前
|
机器学习/深度学习 传感器 算法
GWO-LSTM回归预测 | Matlab灰狼优化算法优化长短时记忆网络回归预测
GWO-LSTM回归预测 | Matlab灰狼优化算法优化长短时记忆网络回归预测
|
3月前
|
负载均衡 算法 云计算
深入理解负载均衡:优化你的网络性能
在今天的数字时代,网络性能和可用性对于任何企业或组织都至关重要。负载均衡是一个关键的网络架构组件,可以帮助分散流量、提高可靠性和确保系统的高可用性。本文将深入探讨负载均衡的概念、工作原理以及在现代网络中的应用。
相关产品
机器翻译
推荐文章
更多