改进海洋捕食者算法NMPA 可直接运行 提供23个基准函数对比与秩和检验 注释详细适合新手小白~Matlab

简介: 改进海洋捕食者算法NMPA 可直接运行 提供23个基准函数对比与秩和检验 注释详细适合新手小白~Matlab

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在计算机科学领域,算法是解决问题的一种方法或步骤的有序集合。随着技术的不断发展,人们不断探索和改进各种算法,以提高计算机系统的性能和效率。其中一个备受关注的算法是海洋捕食者算法(NMPA),它是一种模拟自然界中海洋捕食者行为的优化算法。

NMPA算法的灵感来自于海洋生态系统中的捕食者与猎物之间的相互作用。这个算法通过模拟捕食者的行为来解决优化问题。捕食者根据猎物的位置和适应度进行搜索,并通过迭代过程逐渐优化解决方案。NMPA算法已经在很多领域应用,如图像处理、机器学习和数据挖掘等。

然而,尽管NMPA算法在某些问题上表现出色,但它仍然存在一些局限性和不足之处。为了进一步提高NMPA算法的性能和效果,我们可以进行一些改进和优化。

首先,我们可以通过引入更多的启发式信息来改进NMPA算法。在现有的NMPA算法中,捕食者的行为主要受到猎物的位置和适应度的影响。但是,我们可以考虑引入其他因素,如环境因素和捕食者之间的相互作用。通过更全面地考虑问题的背景和约束条件,我们可以更准确地模拟捕食者的行为,从而提高算法的性能。

其次,我们可以采用自适应的参数调整方法来改进NMPA算法。在传统的NMPA算法中,参数通常是固定的,并且需要手动调整。然而,这种方法可能会导致算法在不同问题上的性能差异较大。为了解决这个问题,我们可以引入自适应的参数调整方法,根据问题的特性和算法的表现来动态地调整参数。这样一来,算法可以更好地适应不同的问题,并提高解决问题的效率。

此外,我们还可以考虑引入并行计算和分布式计算来改进NMPA算法。在大规模问题上,传统的串行计算方法可能会导致计算时间过长。通过利用并行计算和分布式计算的优势,我们可以将任务分解为多个子任务,并同时进行计算。这样一来,不仅可以加快计算速度,还可以提高算法的可扩展性和适应性。

最后,我们可以通过结合NMPA算法和其他优化算法来改进NMPA算法的性能。不同的优化算法在不同的问题上可能具有不同的优势。通过将NMPA算法与其他优化算法相结合,我们可以充分利用它们的优点,并进一步提高算法的性能和效果。

总之,NMPA算法是一种模拟自然界中海洋捕食者行为的优化算法。虽然它在某些问题上表现出色,但仍然存在一些局限性和不足之处。通过引入更多的启发式信息、采用自适应的参数调整方法、引入并行计算和分布式计算以及结合其他优化算法,我们可以进一步改进NMPA算法的性能和效果。这将有助于推动算法在各个领域的应用,并为解决实际问题提供更有效的解决方案。

📣 部分代码

%_________________________________________________________________________%  Marine Predators Algorithm source code (Developed in MATLAB R2015a)%%  programming: Afshin Faramarzi & Seyedali Mirjalili%% paper:%  A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, %  Marine Predators Algorithm: A Nature-inspired Metaheuristic%  Expert Systems with Applications%  DOI: doi.org/10.1016/j.eswa.2020.113377%  %  E-mails: afaramar@hawk.iit.edu            (Afshin Faramarzi)%           muh182@iit.edu                   (Mohammad Heidarinejad)%           ali.mirjalili@laureate.edu.au    (Seyedali Mirjalili) %           gandomi@uts.edu.au               (Amir H Gandomi)%_________________________________________________________________________% This function draw the benchmark functionsfunction func_plot(func_name)[lb,ub,dim,fobj]=Get_Functions_details(func_name);switch func_name     case 'F1'         x=-100:2:100; y=x; %[-100,100]            case 'F2'         x=-100:2:100; y=x; %[-10,10]            case 'F3'         x=-100:2:100; y=x; %[-100,100]            case 'F4'         x=-100:2:100; y=x; %[-100,100]    case 'F5'         x=-200:2:200; y=x; %[-5,5]    case 'F6'         x=-100:2:100; y=x; %[-100,100]    case 'F7'         x=-1:0.03:1;  y=x  %[-1,1]    case 'F8'         x=-500:10:500;y=x; %[-500,500]    case 'F9'         x=-5:0.1:5;   y=x; %[-5,5]        case 'F10'         x=-20:0.5:20; y=x;%[-500,500]    case 'F11'         x=-500:10:500; y=x;%[-0.5,0.5]    case 'F12'         x=-10:0.1:10; y=x;%[-pi,pi]    case 'F13'         x=-5:0.08:5; y=x;%[-3,1]    case 'F14'         x=-100:2:100; y=x;%[-100,100]    case 'F15'         x=-5:0.1:5; y=x;%[-5,5]    case 'F16'         x=-1:0.01:1; y=x;%[-5,5]    case 'F17'         x=-5:0.1:5; y=x;%[-5,5]    case 'F18'         x=-5:0.06:5; y=x;%[-5,5]    case 'F19'         x=-5:0.1:5; y=x;%[-5,5]    case 'F20'         x=-5:0.1:5; y=x;%[-5,5]            case 'F21'         x=-5:0.1:5; y=x;%[-5,5]    case 'F22'         x=-5:0.1:5; y=x;%[-5,5]         case 'F23'         x=-5:0.1:5; y=x;%[-5,5]  end        L=length(x);f=[];for i=1:L    for j=1:L        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0            f(i,j)=fobj([x(i),y(j)]);        end        if strcmp(func_name,'F15')==1            f(i,j)=fobj([x(i),y(j),0,0]);        end        if strcmp(func_name,'F19')==1            f(i,j)=fobj([x(i),y(j),0]);        end        if strcmp(func_name,'F20')==1            f(i,j)=fobj([x(i),y(j),0,0,0,0]);        end               if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1            f(i,j)=fobj([x(i),y(j),0,0]);        end              endendsurfc(x,y,f,'LineStyle','none');colormap winterend

⛳️ 运行结果

🔗 参考文献

[1] 付华,刘尚霖,管智峰,等.阶段化改进的海洋捕食者算法及其应用[J].控制与决策, 2023, 38(4):9.

[2] 张永平,姚雄,徐森.一种基于改进海洋捕食者算法求解作业车间调度的方法:CN202210591528.5[P].CN202210591528.5[2023-09-26].

[3] 李守玉,何庆.改进海洋捕食者算法的特征选择[J].计算机工程与应用, 2023, 59(11):168-179.DOI:10.3778/j.issn.1002-8331.2203-0012.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关文章
|
16天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
18天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
19天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
18天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
31 8
|
17天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
下一篇
DataWorks