改进海洋捕食者算法NMPA 可直接运行 提供23个基准函数对比与秩和检验 注释详细适合新手小白~Matlab

简介: 改进海洋捕食者算法NMPA 可直接运行 提供23个基准函数对比与秩和检验 注释详细适合新手小白~Matlab

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在计算机科学领域,算法是解决问题的一种方法或步骤的有序集合。随着技术的不断发展,人们不断探索和改进各种算法,以提高计算机系统的性能和效率。其中一个备受关注的算法是海洋捕食者算法(NMPA),它是一种模拟自然界中海洋捕食者行为的优化算法。

NMPA算法的灵感来自于海洋生态系统中的捕食者与猎物之间的相互作用。这个算法通过模拟捕食者的行为来解决优化问题。捕食者根据猎物的位置和适应度进行搜索,并通过迭代过程逐渐优化解决方案。NMPA算法已经在很多领域应用,如图像处理、机器学习和数据挖掘等。

然而,尽管NMPA算法在某些问题上表现出色,但它仍然存在一些局限性和不足之处。为了进一步提高NMPA算法的性能和效果,我们可以进行一些改进和优化。

首先,我们可以通过引入更多的启发式信息来改进NMPA算法。在现有的NMPA算法中,捕食者的行为主要受到猎物的位置和适应度的影响。但是,我们可以考虑引入其他因素,如环境因素和捕食者之间的相互作用。通过更全面地考虑问题的背景和约束条件,我们可以更准确地模拟捕食者的行为,从而提高算法的性能。

其次,我们可以采用自适应的参数调整方法来改进NMPA算法。在传统的NMPA算法中,参数通常是固定的,并且需要手动调整。然而,这种方法可能会导致算法在不同问题上的性能差异较大。为了解决这个问题,我们可以引入自适应的参数调整方法,根据问题的特性和算法的表现来动态地调整参数。这样一来,算法可以更好地适应不同的问题,并提高解决问题的效率。

此外,我们还可以考虑引入并行计算和分布式计算来改进NMPA算法。在大规模问题上,传统的串行计算方法可能会导致计算时间过长。通过利用并行计算和分布式计算的优势,我们可以将任务分解为多个子任务,并同时进行计算。这样一来,不仅可以加快计算速度,还可以提高算法的可扩展性和适应性。

最后,我们可以通过结合NMPA算法和其他优化算法来改进NMPA算法的性能。不同的优化算法在不同的问题上可能具有不同的优势。通过将NMPA算法与其他优化算法相结合,我们可以充分利用它们的优点,并进一步提高算法的性能和效果。

总之,NMPA算法是一种模拟自然界中海洋捕食者行为的优化算法。虽然它在某些问题上表现出色,但仍然存在一些局限性和不足之处。通过引入更多的启发式信息、采用自适应的参数调整方法、引入并行计算和分布式计算以及结合其他优化算法,我们可以进一步改进NMPA算法的性能和效果。这将有助于推动算法在各个领域的应用,并为解决实际问题提供更有效的解决方案。

📣 部分代码

%_________________________________________________________________________%  Marine Predators Algorithm source code (Developed in MATLAB R2015a)%%  programming: Afshin Faramarzi & Seyedali Mirjalili%% paper:%  A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, %  Marine Predators Algorithm: A Nature-inspired Metaheuristic%  Expert Systems with Applications%  DOI: doi.org/10.1016/j.eswa.2020.113377%  %  E-mails: afaramar@hawk.iit.edu            (Afshin Faramarzi)%           muh182@iit.edu                   (Mohammad Heidarinejad)%           ali.mirjalili@laureate.edu.au    (Seyedali Mirjalili) %           gandomi@uts.edu.au               (Amir H Gandomi)%_________________________________________________________________________% This function draw the benchmark functionsfunction func_plot(func_name)[lb,ub,dim,fobj]=Get_Functions_details(func_name);switch func_name     case 'F1'         x=-100:2:100; y=x; %[-100,100]            case 'F2'         x=-100:2:100; y=x; %[-10,10]            case 'F3'         x=-100:2:100; y=x; %[-100,100]            case 'F4'         x=-100:2:100; y=x; %[-100,100]    case 'F5'         x=-200:2:200; y=x; %[-5,5]    case 'F6'         x=-100:2:100; y=x; %[-100,100]    case 'F7'         x=-1:0.03:1;  y=x  %[-1,1]    case 'F8'         x=-500:10:500;y=x; %[-500,500]    case 'F9'         x=-5:0.1:5;   y=x; %[-5,5]        case 'F10'         x=-20:0.5:20; y=x;%[-500,500]    case 'F11'         x=-500:10:500; y=x;%[-0.5,0.5]    case 'F12'         x=-10:0.1:10; y=x;%[-pi,pi]    case 'F13'         x=-5:0.08:5; y=x;%[-3,1]    case 'F14'         x=-100:2:100; y=x;%[-100,100]    case 'F15'         x=-5:0.1:5; y=x;%[-5,5]    case 'F16'         x=-1:0.01:1; y=x;%[-5,5]    case 'F17'         x=-5:0.1:5; y=x;%[-5,5]    case 'F18'         x=-5:0.06:5; y=x;%[-5,5]    case 'F19'         x=-5:0.1:5; y=x;%[-5,5]    case 'F20'         x=-5:0.1:5; y=x;%[-5,5]            case 'F21'         x=-5:0.1:5; y=x;%[-5,5]    case 'F22'         x=-5:0.1:5; y=x;%[-5,5]         case 'F23'         x=-5:0.1:5; y=x;%[-5,5]  end        L=length(x);f=[];for i=1:L    for j=1:L        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0            f(i,j)=fobj([x(i),y(j)]);        end        if strcmp(func_name,'F15')==1            f(i,j)=fobj([x(i),y(j),0,0]);        end        if strcmp(func_name,'F19')==1            f(i,j)=fobj([x(i),y(j),0]);        end        if strcmp(func_name,'F20')==1            f(i,j)=fobj([x(i),y(j),0,0,0,0]);        end               if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1            f(i,j)=fobj([x(i),y(j),0,0]);        end              endendsurfc(x,y,f,'LineStyle','none');colormap winterend

⛳️ 运行结果

🔗 参考文献

[1] 付华,刘尚霖,管智峰,等.阶段化改进的海洋捕食者算法及其应用[J].控制与决策, 2023, 38(4):9.

[2] 张永平,姚雄,徐森.一种基于改进海洋捕食者算法求解作业车间调度的方法:CN202210591528.5[P].CN202210591528.5[2023-09-26].

[3] 李守玉,何庆.改进海洋捕食者算法的特征选择[J].计算机工程与应用, 2023, 59(11):168-179.DOI:10.3778/j.issn.1002-8331.2203-0012.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关文章
|
1天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
1天前
|
算法 安全 机器人
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
|
1天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
4天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
2天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
4天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
32 15
|
3天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
149 68

热门文章

最新文章