m基于gardner环的定时同步matlab仿真,采用四倍采样,QPSK调制进行测试

简介: m基于gardner环的定时同步matlab仿真,采用四倍采样,QPSK调制进行测试

1.算法仿真效果
matlab2022a仿真结果如下:

938a9bde7a30e7c32ec6f4d3bdf8c1f6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

对比不同时偏,不同SNR下gardner环的定时调整参数uk变化仿真结果图:

1ab837c2f237a92028424592dabba867_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
位同步,也叫符号同步、定时同步、码元同步,只有数字通信才需要,数字通信中不管是基带传输还是频带传输都需要。

   这是因为数字通信中,是用波形中的几个采样点去代替一个符号,在接收端只需要对这些采样点中的一个进行判决,便可以恢复出这个符号。

   实际通信中,由于信道的传输时延,接收两端的时钟偏移,接收端无法找到符号的最佳时刻来对其进行采样判决,这便使得接收端恢复出的数据与发送端的数据有误差。

   接收端若想在最佳采样时刻恢复发送端的数据,便要使得接收时钟与发送时钟同步,因此接收端要采取措施来调整接收端的采样时钟,这个同步的过程便定义为位同步。

   Gardner定时误差算法通常用在BPSK、QPSK信号,通过改进可以应用在QAM等多进制基带信号中。Gardner定时误差算法,该算法的一个特点是每个符号只需要使用两个采样点,一个是strobe点,即最佳观察点,另外一个是midstrobe点,即两个观察点之间的采样点。Gardener环中的数控振荡器与锁相环路中的NCO功能完全不同,这里的NCO作用是产生时钟,即确定内插基点mk,同时完成分数间隔uk的计算,以提供给内插器进行内插。

     位同步环路中的数控振荡器(NCO)是一个相位递减器,它的差分方程为:

η(m+1)=[η(m)-ω(m)]mod1

   式中,η(m)是第m个工作时钟NCO寄存器的内容,ω(m)为NCO的控制字,两者都是正小数。NCO的工作周期是T s(采样周期),内插器的周期为T i,ω(m)由环路滤波器进行调节,使NCO在最佳采样时刻溢出。当环路达到平衡时,ω(m)近似是个常数,此时平均每隔1/ω(m)个采样周期,NCO就溢出一次,所以

30d90b26ec1877bbd1031f6c66e35e04_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

gardner环内部结构如下所示:

52bca6b84e1d4300898d64da726da9fc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

errs        = [2e-4,0.5e-4,0.2e-4];     
SNR_DBs     = [1,10,20];
idx         = 0;



for i1 = 1:length(errs)
for i2 = 1:length(SNR_DBs)
err         = errs(i1); 
SNR_DB      = SNR_DBs(i2);
idx         = idx+1;
sl          = 3000;           

 ............................................................
I_D  = awgn(I_D,SNR_DB,'measured');  %接受端的信号,加载指定的snr
Q_D  = awgn(Q_D,SNR_DB,'measured');  %接受端的信号,加载指定的snr
.........................................................................
 %gardner环
 for i = 2 : interplen - 1
     for k = 1 : nsamp
          %nco控制模块
          y_temp = q0 - w;
          q(m) = q0;
          if y_temp > 0
              q0 = y_temp;
          else 
              q0 = mod(y_temp,1);
              mk = m;
              uk = s0 * q(m);
              uu(j) = uk;
              %内插器I
              data1 = datarcosI(mk);
              data2 = datarcosI(mk + 1);
              interp_outI(j) = uk * data2 + (1 - uk) * data1;
              %内插抽取模块
.............................................................
          end
          m  = m + 1;
     end
      %误差检测         
................................................
      %环路滤波
..........................................................
 end

%gardner环性能
figure(1);
subplot(3,3,idx)
plot(uu,'b');
grid on; 
title(['SNR=',num2str(SNR_DB),'  时偏:',num2str(err)]);

end
end
%系统最后输出数据与原始数据比对
figure;
subplot(311);
stem(I_Data(6:end-6));
grid on;
xlim([5000,5100]);
legend('原始信号');

subplot(312);
stem(I_D(4:nsamp:end));
grid on;
xlim([5000,5100]);
legend('定时同步前基带信号');

subplot(313);
stem(qoutI(2:end));
grid on;
xlim([5000,5100]);
legend('gardner环输出基带信号');
相关文章
|
8月前
|
机器学习/深度学习 算法
m基于深度学习的64QAM调制解调系统频偏估计和补偿算法matlab仿真
### 算法仿真结果 展示5张图像,描绘了基于深度学习的频偏估计和补偿在MATLAB 2022a中的仿真效果。 ### 理论概要 - 深度学习算法用于建立信号与频偏的非线性映射,无需导频,节省资源。 - 网络模型(如CNN或RNN)处理IQ数据,提取特征,简化估计补偿过程,降低复杂度。 - 64QAM系统中,通过神经网络实现精确频偏感知,增强通信性能。 ### MATLAB核心程序 - 代码生成64QAM信号,模拟不同SNR和频偏条件,使用深度学习进行相位估计和补偿。 - 仿真比较了有无补偿的误码率,显示补偿能显著改善通信质量。 ```
102 1
|
8月前
|
算法
m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。
91 1
|
3月前
|
算法 5G 数据安全/隐私保护
MIMO系统中差分空间调制解调matlab误码率仿真
本项目展示了一种基于Matlab 2022a的差分空间调制(Differential Space Modulation, DMS)算法。DMS是一种应用于MIMO通信系统的信号传输技术,通过空间域的不同天线传输符号序列,并利用差分编码进行解调。项目包括算法运行效果图预览、核心代码及详细中文注释、理论概述等内容。在发送端,每次仅激活一个天线发送符号;在接收端,通过差分解调估计符号和天线选择。DMS在快速衰落信道中表现出色,尤其适用于高速移动和卫星通信系统。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
8月前
数字频带传输——多进制数字调制及MATLAB仿真
数字频带传输——多进制数字调制及MATLAB仿真
128 2
|
5月前
|
Windows
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
本文通过MATLAB仿真实现了OFDM系统中BPSK、QPSK、4QAM、16QAM和32QAM调制解调过程,并在加性高斯白噪声信道及TDL瑞利衰落信道下计算了不同信噪比条件下的误比特率。
323 4
基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MQAM调制识别matlab仿真
**理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。 - **展望**: CNN强化无线通信信号处理,未来应用前景广阔。
|
5月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
110 0
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MPSK调制识别matlab仿真
本项目展示一种基于CNN的MPSK调制识别算法,可在Matlab 2022a上运行。该算法能自动区分BPSK、QPSK及8PSK信号,利用卷积层捕捉相位特征并通过全连接层分类。训练过程涉及调整网络权重以最小化预测误差,最终实现对未知信号的有效识别。附带完整代码与说明视频。
|
6月前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。