基于CNN卷积神经网络的MPSK调制识别matlab仿真

简介: 本项目展示一种基于CNN的MPSK调制识别算法,可在Matlab 2022a上运行。该算法能自动区分BPSK、QPSK及8PSK信号,利用卷积层捕捉相位特征并通过全连接层分类。训练过程涉及调整网络权重以最小化预测误差,最终实现对未知信号的有效识别。附带完整代码与说明视频。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

layers = [
    imageInputLayer([656 875 3]);%注意,656,875为能量图的大小,不能改
.............................................................

    %全连接层
    fullyConnectedLayer(3);
    %softmax
    softmaxLayer;
    %输出分类结果
    classificationLayer;];

%设置训练参数
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.00002, ...
    'MaxEpochs', 100, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', imdsValidation, ...
    'ValidationFrequency', 10, ...
    'Verbose', false, ...
    'Plots', 'training-progress');
..........................................................
figure;
plot(IT(1:5:end),LOSS(1:5:end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('epoch');
ylabel('LOSS');


figure;
plot(IT(1:5:end),Accuracy(1:5:end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('epoch');
ylabel('Accuracy');

save CNN.mat
155

4.算法理论概述
基于卷积神经网络(CNN)的MPSK(M-ary Phase Shift Keying)调制识别技术,是一种利用深度学习模型来自动学习和区分不同MPSK调制信号特征的方法。在本讨论中,我们将聚焦于识别三种基本的MPSK调制类型:二进制相移键控(BPSK)、四进制相移键控(QPSK)和八进制相移键控(8PSK)。

   CNN是一种特殊类型的神经网络,其设计灵感来源于生物视觉系统,特别擅长处理具有空间结构的数据,如图像和一维信号。其核心组成包括卷积层、池化层、全连接层和输出层。

image.png

    MPSK调制信号的识别依赖于其独特的相位特征。每种调制类型定义了一组离散的相位角,如BPSK(0°和180°),QPSK(45°, 135°, 225°, 315°),8PSK(依次间隔45°的八个相位点)。CNN的任务是学习这些相位差,进而识别调制类型。

训练阶段:使用已知调制类型的标记信号作为训练数据,通过反向传播算法调整网络权重,以最小化预测错误(如交叉熵损失函数)。

识别阶段:对于未知信号,通过训练好的CNN模型进行前向传播,输出各调制类型的概率分布,选择最高概率对应的调制类型作为识别结果。

相关文章
|
14天前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
50 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
19 7
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
6天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
6天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
22 1
|
16天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
13天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
15天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
16天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
17天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
下一篇
无影云桌面