基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真

简介: 本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。

1.算法运行效果图预览
(完整程序运行后无水印)

1.gif
2.jpeg

通过CNN训练ORL人脸库:

3.jpeg

通过NSCT+CNN方式训练ORL人脸库:

4.jpeg

两种方法识别率对比:

5.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

nlayers      = 3;      
%取值4或者8,当方向个数为4时采用两两合并,当为8时不做任何变化
norients     = 8;       
for i = 1:20
    i
    for j = 1:10
        str          = ['ORL\',num2str(i),'\','s',num2str(i),'_',num2str(j),'.bmp'];  
        im           = imread(str);  %读入图片
        [R,C,K]      = size(im);
        if K == 1
           img = im; 
        else
           img = rgb2gray(im);  
        end

        [ri,ci]    = size(img);
        scales     = nlayers;
        img        = img(1 : 2^(scales+1)*floor(ri/2^(scales+1)),1 : 2^(scales+1)*floor(ci/2^(scales+1))); 
        y_nsctdec  = nsctdec(img,[3,3,3],'dmaxflat7','maxflat');
        I          = y_nsctdec{1};
        name1      = ['ORL_nsct\',num2str(i),'\','s',num2str(i),'_',num2str(j),'.bmp']; 
        imwrite(uint8(I),name1);

    end
end
%显示NSCT效果
y_nsctrec  = nsctrec(y_nsctdec,'dmaxflat7','maxflat');
figure;
subplot(131);
imshow(img);
title('原图像');
subplot(132);
imshow(y_nsctdec{1},[]);
title('NSCT变换后图像');
subplot(133);
imshow(y_nsctrec,[]);
title('NSCT逆变换后图像');
10_031m

4.算法理论概述
基于非采样轮廓波变换(Nonsubsampled Contourlet Transform, NSCT)和卷积神经网络(Convolutional Neural Network, CNN)的人脸识别系统是一种结合了传统信号处理方法和深度学习技术的先进方法。这种方法通过NSCT提取图像的多尺度、多方向特征,并利用CNN的强大特征学习能力和分类能力来实现高效的人脸识别。

   NSCT是一种多尺度、多方向的图像分解方法,它结合了多分辨率分析和方向滤波器组的优点,可以有效地捕获图像中的纹理和边缘信息。NSCT的主要步骤包括:

多尺度分析:通过级联的拉普拉斯金字塔(Laplacian Pyramid, LP)分解来实现多尺度分析。

多方向分析:使用方向滤波器组对每个尺度的子带进行分解,以获得不同方向的细节。

6.png
7.png

   基于NSCT和CNN的人脸识别系统通过结合传统的信号处理方法和现代深度学习技术,可以有效地提取人脸图像的多尺度、多方向特征,并利用CNN的强大分类能力实现高效的人脸识别。
相关文章
|
30天前
|
数据安全/隐私保护
地震波小波变换,matlab小波变换,时频域分析
地震波小波变换,matlab小波变换,时频域分析
|
10天前
|
机器学习/深度学习 编解码 计算机视觉
MATLAB实现人脸识别检测与标出图片中人脸
MATLAB实现人脸识别检测与标出图片中人脸
61 0
|
3月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
3月前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
4月前
|
编解码 算法 数据安全/隐私保护
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
|
4月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
3月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
5月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
293 10
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
372 10