m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试

简介: MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。

1.算法仿真效果
matlab2022a仿真结果如下:
13917ee7cc11297b6023a2efe6e9fd59_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
56e9f423ad5019fe7727807a13321ea2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
无线图像传输在现代通信系统中扮演着至关重要的角色。为了满足高质量、高可靠性的传输需求,研究者们不断探索各种先进的编码、调制和信道估计技术。OFDM、QPSK、LDPC和MMSE信道估计就是其中的佼佼者,它们各自在无线通信领域具有广泛的应用。

2.1 OFDM基本原理
OFDM是一种多载波调制技术,通过将高速数据流分割成多个低速子数据流,然后在不同的子载波上进行并行传输,从而有效对抗频率选择性衰落和提高频谱效率。

ec81c6d44dc3dd2d4f4a4e1d3b22f5c0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 QPSK(正交相移键控)
QPSK是一种将两比特信息编码在一个载波符号上的数字调制方式,它利用四个相位点(0°,90°,180°,270°)来分别代表二进制序列“00”,“01”,“10”,“11”。

   QPSK是一种相位调制技术,它将每两个比特映射到一个具有四种可能相位的符号上。每个符号代表一个特定的相位,从而在接收端可以通过检测相位来恢复原始数据。

2.3 LDPC(低密度奇偶校验码)
LDPC码是一种具有稀疏校验矩阵的线性分组码,能够接近香农极限的性能,常用于前向纠错(FEC)。

编码:根据预定义的LDPC校验矩阵对原始图像数据进行编码。

解码:采用 belief propagation (BP) 算法等进行迭代解码,恢复出可能的原始数据序列。

2.4 MMSE(最小均方误差)信道估计
MMSE信道估计用于估计发送端和接收端之间的无线信道特性。
67476e36e5ac4dc5bf3b156d0a39c45f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.5 整体流程
1.图像数据编码压缩;

2.数据流通过QPSK调制映射到OFDM子载波上;

3.发送端发射带有导频信号的OFDM符号;

4.接收端通过MMSE算法估计信道响应;

5.利用估计得到的信道信息对接收到的OFDM符号进行均衡处理;

6.对均衡后的信号使用LDPC解码器解码恢复原始图像数据;

7.进行解码后的图像重建显示。

   在实际应用中,上述步骤涉及大量复杂的数学推导和优化,需要结合具体应用场景和硬件条件进一步调整参数以达到最佳性能。为了深入理解,请查阅相关文献或使用支持数学公式的编辑工具查看详细的理论分析与实验结果。

3.MATLAB核心程序
``` [Qpsk0,Dqpsk_pilot,symbol_bit] = func_piQPSK_mod(seridata);
%变换为矩阵
Qpsk_matrix = reshape(Qpsk0,fftlen,Nc);
[Pilot_in,pilot_num,Pilot_seq,pilot_space] = func_insert_pilot(Dqpsk_pilot,Qpsk_matrix,pilot_type,T,TG);
%sub carrier mapping
Pilot_in = func_subcarrierMap(Pilot_in);
%IFFT transform,产生OFDM信号
ifft_out = ifft(Pilot_in);
%插入包含间隔
Guard_int = ceil(BWs/fftlen);
Guard_int_ofdm = func_guard_interval_insert(ifft_out,fftlen,Guard_int);
%将矩阵数据转换为串行进行输出
Guard_int_ofdm_out = reshape(Guard_int_ofdm,1,(fftlen+Guard_int)*(Nc+pilot_num));

   %%
    %Step1:大规模MIMO信道
    [Hm,Hmmatrix]            = func_mychannels(Radius,Scale1,Scale2,Nh,Nv);       
    %Step2:多径参数和大规模MIMO参数输入到信道模型中
    %信道采样点数,每个调制符号采一个点
    [passchan_ofdm_symbol]   = func_conv_channels(Hmmatrix,Guard_int_ofdm_out,Nmultipath,Pow_avg,delay_multi,Fre_offset,timeval,iii);
    %Step3:噪声信道 
    Rec_ofdm_symbol          = awgn(passchan_ofdm_symbol,SNR_dB(i),'measured');

   %%
    %开始接收
    Guard_int_remove = func_guard_interval_remove(Rec_ofdm_symbol,(fftlen+Guard_int),Guard_int,(Nc+pilot_num));
    %FFT
    fft_out          = fft(Guard_int_remove);
    %sub carrier demapping
    fft_out          = func_desubcarrierMap(fft_out);
    %信道估计
    %mmse
    [Sig_Lrmmse,Hs]  = func_mmse_est(fft_out,pilot_space,Pilot_seq,pilot_num,delay_avg/timeval,4e-6/timeval,10^(SNR_dB(i)/10));
    %解调
    Dqpsk            = func_pideMapping(Sig_Lrmmse,fftlen*Nc);
    %LDPC解码
    z_hat            = func_Dec(2*Dqpsk(1:end-(Len*Nc-length(seridata1)))-1,sigma,H,max_iter);
    Dqpsk_decode     = round(z_hat(size(G,2)+1-size(G,1):size(G,2)));
    %计算误码率
    err_num          = Len*Nc/4-length(find(msg==Dqpsk_decode(1:Len*Nc/4)));
    Error            = Error + err_num;

%误码率
figure
semilogy(SNR_dB,Err_Rate,'b-o');
grid on
xlabel('SNR');
ylabel('BER');
axis([-0.0001,10,1e-5,1]);

save R0.mat SNR_dB Err_Rate
```

相关文章
|
5天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
38 5
|
1天前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
16 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
64 0
|
6月前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
6月前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
72 0
|
12天前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
57 11
|
1月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
65 3
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
80 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
3月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
273 7
Jmeter实现WebSocket协议的接口测试方法
|
3月前
|
JSON 移动开发 监控
快速上手|HTTP 接口功能自动化测试
HTTP接口功能测试对于确保Web应用和H5应用的数据正确性至关重要。这类测试主要针对后台HTTP接口,通过构造不同参数输入值并获取JSON格式的输出结果来进行验证。HTTP协议基于TCP连接,包括请求与响应模式。请求由请求行、消息报头和请求正文组成,响应则包含状态行、消息报头及响应正文。常用的请求方法有GET、POST等,而响应状态码如2xx代表成功。测试过程使用Python语言和pycurl模块调用接口,并通过断言机制比对实际与预期结果,确保功能正确性。
289 3
快速上手|HTTP 接口功能自动化测试