m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试

简介: MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。

1.算法仿真效果
matlab2022a仿真结果如下:
13917ee7cc11297b6023a2efe6e9fd59_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
56e9f423ad5019fe7727807a13321ea2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
无线图像传输在现代通信系统中扮演着至关重要的角色。为了满足高质量、高可靠性的传输需求,研究者们不断探索各种先进的编码、调制和信道估计技术。OFDM、QPSK、LDPC和MMSE信道估计就是其中的佼佼者,它们各自在无线通信领域具有广泛的应用。

2.1 OFDM基本原理
OFDM是一种多载波调制技术,通过将高速数据流分割成多个低速子数据流,然后在不同的子载波上进行并行传输,从而有效对抗频率选择性衰落和提高频谱效率。

ec81c6d44dc3dd2d4f4a4e1d3b22f5c0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 QPSK(正交相移键控)
QPSK是一种将两比特信息编码在一个载波符号上的数字调制方式,它利用四个相位点(0°,90°,180°,270°)来分别代表二进制序列“00”,“01”,“10”,“11”。

   QPSK是一种相位调制技术,它将每两个比特映射到一个具有四种可能相位的符号上。每个符号代表一个特定的相位,从而在接收端可以通过检测相位来恢复原始数据。

2.3 LDPC(低密度奇偶校验码)
LDPC码是一种具有稀疏校验矩阵的线性分组码,能够接近香农极限的性能,常用于前向纠错(FEC)。

编码:根据预定义的LDPC校验矩阵对原始图像数据进行编码。

解码:采用 belief propagation (BP) 算法等进行迭代解码,恢复出可能的原始数据序列。

2.4 MMSE(最小均方误差)信道估计
MMSE信道估计用于估计发送端和接收端之间的无线信道特性。
67476e36e5ac4dc5bf3b156d0a39c45f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.5 整体流程
1.图像数据编码压缩;

2.数据流通过QPSK调制映射到OFDM子载波上;

3.发送端发射带有导频信号的OFDM符号;

4.接收端通过MMSE算法估计信道响应;

5.利用估计得到的信道信息对接收到的OFDM符号进行均衡处理;

6.对均衡后的信号使用LDPC解码器解码恢复原始图像数据;

7.进行解码后的图像重建显示。

   在实际应用中,上述步骤涉及大量复杂的数学推导和优化,需要结合具体应用场景和硬件条件进一步调整参数以达到最佳性能。为了深入理解,请查阅相关文献或使用支持数学公式的编辑工具查看详细的理论分析与实验结果。

3.MATLAB核心程序
``` [Qpsk0,Dqpsk_pilot,symbol_bit] = func_piQPSK_mod(seridata);
%变换为矩阵
Qpsk_matrix = reshape(Qpsk0,fftlen,Nc);
[Pilot_in,pilot_num,Pilot_seq,pilot_space] = func_insert_pilot(Dqpsk_pilot,Qpsk_matrix,pilot_type,T,TG);
%sub carrier mapping
Pilot_in = func_subcarrierMap(Pilot_in);
%IFFT transform,产生OFDM信号
ifft_out = ifft(Pilot_in);
%插入包含间隔
Guard_int = ceil(BWs/fftlen);
Guard_int_ofdm = func_guard_interval_insert(ifft_out,fftlen,Guard_int);
%将矩阵数据转换为串行进行输出
Guard_int_ofdm_out = reshape(Guard_int_ofdm,1,(fftlen+Guard_int)*(Nc+pilot_num));

   %%
    %Step1:大规模MIMO信道
    [Hm,Hmmatrix]            = func_mychannels(Radius,Scale1,Scale2,Nh,Nv);       
    %Step2:多径参数和大规模MIMO参数输入到信道模型中
    %信道采样点数,每个调制符号采一个点
    [passchan_ofdm_symbol]   = func_conv_channels(Hmmatrix,Guard_int_ofdm_out,Nmultipath,Pow_avg,delay_multi,Fre_offset,timeval,iii);
    %Step3:噪声信道 
    Rec_ofdm_symbol          = awgn(passchan_ofdm_symbol,SNR_dB(i),'measured');

   %%
    %开始接收
    Guard_int_remove = func_guard_interval_remove(Rec_ofdm_symbol,(fftlen+Guard_int),Guard_int,(Nc+pilot_num));
    %FFT
    fft_out          = fft(Guard_int_remove);
    %sub carrier demapping
    fft_out          = func_desubcarrierMap(fft_out);
    %信道估计
    %mmse
    [Sig_Lrmmse,Hs]  = func_mmse_est(fft_out,pilot_space,Pilot_seq,pilot_num,delay_avg/timeval,4e-6/timeval,10^(SNR_dB(i)/10));
    %解调
    Dqpsk            = func_pideMapping(Sig_Lrmmse,fftlen*Nc);
    %LDPC解码
    z_hat            = func_Dec(2*Dqpsk(1:end-(Len*Nc-length(seridata1)))-1,sigma,H,max_iter);
    Dqpsk_decode     = round(z_hat(size(G,2)+1-size(G,1):size(G,2)));
    %计算误码率
    err_num          = Len*Nc/4-length(find(msg==Dqpsk_decode(1:Len*Nc/4)));
    Error            = Error + err_num;

%误码率
figure
semilogy(SNR_dB,Err_Rate,'b-o');
grid on
xlabel('SNR');
ylabel('BER');
axis([-0.0001,10,1e-5,1]);

save R0.mat SNR_dB Err_Rate
```

相关文章
|
3天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
21 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
6天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
10 1
|
6天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
19 1
|
6天前
|
存储 算法
m基于LDPC编译码的matlab误码率仿真,对比SP,MS,NMS以及OMS四种译码算法
MATLAB 2022a仿真实现了LDPC译码算法比较,包括Sum-Product (SP),Min-Sum (MS),Normalized Min-Sum (NMS)和Offset Min-Sum (OMS)。四种算法在不同通信场景有各自优势:SP最准确但计算复杂度高;MS计算复杂度最低但性能略逊;NMS通过归一化提升低SNR性能;OMS引入偏置优化高SNR表现。适用于资源有限或高性能需求的场景。提供的MATLAB代码用于仿真并绘制不同SNR下的误码率曲线。
149 3
|
6天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
6天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6天前
|
算法 调度
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
|
6天前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
6天前
|
运维 算法
基于改进遗传算法的配电网故障定位(matlab代码)
基于改进遗传算法的配电网故障定位(matlab代码)

热门文章

最新文章