python 3.7 进行mnist高级训练

简介: python 3.7 进行mnist高级训练
+关注继续查看

代码如下:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import math
import numpy
import tensorflow as tf
sess = tf.InteractiveSession()

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
 
def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
 
def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x = tf.placeholder(tf.float32, shape=[None, 784])
x_image = tf.reshape(x, [-1,28,28,1])


h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)


keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
y_ = tf.placeholder(tf.float32, shape = [None, 10])

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())

for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    
    print( "step %d, training accuracy %g" ,(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print ("test accuracy %g",accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

这个执行下来正确率达到99%以上了,如下:

image

相关文章
|
3天前
|
算法 Python
Python高级数据结构——并查集(Disjoint Set)
Python高级数据结构——并查集(Disjoint Set)
26 2
|
4天前
|
算法 搜索推荐 Python
Python高级数据结构——图论算法(Graph Algorithms)
Python高级数据结构——图论算法(Graph Algorithms)
45 0
|
4天前
|
存储 缓存 数据库
Python高级数据结构——散列表(Hash Table)
Python高级数据结构——散列表(Hash Table)
42 1
Python高级数据结构——散列表(Hash Table)
|
4天前
|
前端开发 索引 Python
Python 教程之 Numpy(7)—— 基本切片和高级索引
Python 教程之 Numpy(7)—— 基本切片和高级索引
9 1
|
4天前
|
算法 搜索推荐 Python
Python高级数据结构——堆(Heap)
Python高级数据结构——堆(Heap)
50 2
|
4天前
|
存储 算法 数据库
Python高级数据结构——树(Tree)
Python高级数据结构——树(Tree)
68 1
|
4天前
|
存储 算法 搜索推荐
Python高级数据结构——图(Graph)
Python高级数据结构——图(Graph)
44 0
|
15天前
|
网络协议 Python
python高级-socket和web相关(上)
python高级-socket和web相关
25 0
|
15天前
|
Python
python高级-socket和web相关(下)
python高级-socket和web相关(上)
27 0
|
15天前
|
Kubernetes Linux Python
python高级-线程和进程相关(下)
python高级-线程和进程相关(上)
29 0
相关产品
云迁移中心
推荐文章
更多