基于DNN深度学习网络的OFDM+QPSK信号检测算法matlab仿真

简介: 基于DNN深度学习网络的OFDM+QPSK信号检测算法matlab仿真

1.算法运行效果图预览

3d3d49be7231fa1b13dfc3e5617d1fa6_82780907_202309172132310458746453_Expires=1694958151&Signature=u4DcCarR2LPURCGbsQBNaZL8wlA%3D&domain=8.png
450eaef3232221e79ce7cb519193175c_82780907_202309172132310410849141_Expires=1694958151&Signature=oPeOHQbZL0LBw0SrVbyb6nVvbRA%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
正交频分复用(OFDM)是一种多载波调制技术,已经广泛应用于数字通信领域。OFDM信号检测是接收端的关键问题之一,目的是将接收到的OFDM信号恢复为原始数据。由于OFDM信号具有高带宽效率、抗多径衰落等特点,可以在高速移动环境下实现高速数据传输。但是,OFDM信号的检测存在一些困难,例如频率偏移、信道估计误差、多路径干扰等。为了解决这些问题,近年来,深度学习技术被广泛应用于OFDM信号检测中。

c12be75893fa481cae50fbcd95bf6746_82780907_202309172132410019781605_Expires=1694958161&Signature=w1M3y%2Fe%2F7D7XDgnooFH3nq3JEEs%3D&domain=8.png

3.基于DNN的OFDM信号检测模型

基于DNN的OFDM信号检测模型可以表示为:

$$\hat{s}{n,k}=\arg\max{s_{n,k}}P(s_{n,k}|r_{n,k},\theta)$$

    其中,$\hat{s}{n,k}$是预测的数据符号,$r{n,k}$是接收到的OFDM信号,$\theta$是模型参数。该模型可以通过DNN深度学习网络来学习OFDM信号的映射关系,从而实现OFDM信号的检测。

   在实际应用中,需要实现实时OFDM信号检测。这可以通过将训练好的模型部署到实际系统中来实现。在实时检测过程中,需要对接收到的OFDM信号进行预处理,并将其输入到训练好的模型中进行检测。实时检测的实现需要考虑到时间延迟、资源限制等因素。

  基于DNN深度学习网络的OFDM信号检测已广泛应用于数字通信领域。它可以用于解决OFDM信号检测中的一些难题,例如频率偏移、信道估计误差、多路径干扰等。此外,它还可以用于无线电频谱感知、无线电干扰检测等领域。

4.部分核心程序

```Transmitted_signal = OFDM_Transmitter(data_in_IFFT, NFFT, NCP);

    %信道
    Ray_h_ofdm             = (1 / sqrt(2)) * randn(len_symbol, 1) + (1 / sqrt(2)) * 1j * randn(len_symbol, 1); % Rayleigh channel coff
    Rayleigh_h_channel     = repmat(Ray_h_ofdm, Frame_size, 1);
    Rayleigh_Fading_Signal = awgn(Rayleigh_h_channel .* Transmitted_signal,SNR,'measured');
    signal_ideal           = Rayleigh_Fading_Signal ./ Rayleigh_h_channel;

    Multitap_h = [(randn + 1j * randn);...
                  (randn + 1j * randn) / 24] ;

    %卷积通过信道
    Multipath_Signal        = conv(Transmitted_signal, Multitap_h);

    Multipath_Signal        = awgn(Multipath_Signal(1 : length(Transmitted_signal)),SNR,'measured');
    % OFDM 接收
    [Rsignals0, Rsignalsh0] = OFDM_Receiver(Multipath_Signal, NFFT, NCP, len_symbol, signal_ideal);

    % 进行深度学习部分,使用已训练好的神经网络进行解调
    [DNN_feature_signal, ~, ~] = Extract_Feature_OFDM(Rsignals0, dataSym(1:2), M, QPSK_signal(1:8));
    Received_data_DNN          = predict(DNN_Trained, DNN_feature_signal);
    Received_data_DNN          = transpose(Received_data_DNN);
    DNN_Received_data          = Received_data_DNN(1:2:end, :) + 1j * Received_data_DNN(2:2:end, :);

    DNN_dataSym_Rx             = QPSK_Demodulator(DNN_Received_data);

    DNN_dataSym_Received       = de2bi(DNN_dataSym_Rx, 2);
    DNN_Data_Received          = reshape(DNN_dataSym_Received, [], 1);

    DNN_sym_err(ij, 1)         = sum(sum(round(dataSym(1:8)) ~= round(DNN_dataSym_Rx)));
    DNN_bit_err(ij, 1)         = sum(sum(round(reshape(de2bi(dataSym(1:8), 2),[],1)) ~= round(DNN_Data_Received)));  
end
Bers(idx, 1) = sum(DNN_bit_err, 1) / N_bits_DNN; % 计算平均比特误码率
Sers(idx, 1) = sum(DNN_sym_err, 1) / N_QPSK_DNN; % 计算平均符号误码率

```

相关文章
|
2月前
|
算法
基于MPPT算法的光伏并网发电系统simulink建模与仿真
本课题基于MATLAB/Simulink搭建光伏并网发电系统模型,集成PV模块、MPPT算法、PWM控制与并网电路,实现最大功率跟踪与电能高效并网。通过仿真验证系统在不同环境下的动态响应与稳定性,采用SVPWM与电流闭环控制,确保输出电流与电网同频同相,满足并网电能质量要求。
|
2月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
308 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
146 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
121 0
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
140 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
188 8
|
2月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
189 8

热门文章

最新文章