基于DNN深度学习网络的OFDM+QPSK信号检测算法matlab仿真

简介: 基于DNN深度学习网络的OFDM+QPSK信号检测算法matlab仿真

1.算法运行效果图预览

3d3d49be7231fa1b13dfc3e5617d1fa6_82780907_202309172132310458746453_Expires=1694958151&Signature=u4DcCarR2LPURCGbsQBNaZL8wlA%3D&domain=8.png
450eaef3232221e79ce7cb519193175c_82780907_202309172132310410849141_Expires=1694958151&Signature=oPeOHQbZL0LBw0SrVbyb6nVvbRA%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
正交频分复用(OFDM)是一种多载波调制技术,已经广泛应用于数字通信领域。OFDM信号检测是接收端的关键问题之一,目的是将接收到的OFDM信号恢复为原始数据。由于OFDM信号具有高带宽效率、抗多径衰落等特点,可以在高速移动环境下实现高速数据传输。但是,OFDM信号的检测存在一些困难,例如频率偏移、信道估计误差、多路径干扰等。为了解决这些问题,近年来,深度学习技术被广泛应用于OFDM信号检测中。

c12be75893fa481cae50fbcd95bf6746_82780907_202309172132410019781605_Expires=1694958161&Signature=w1M3y%2Fe%2F7D7XDgnooFH3nq3JEEs%3D&domain=8.png

3.基于DNN的OFDM信号检测模型

基于DNN的OFDM信号检测模型可以表示为:

$$\hat{s}{n,k}=\arg\max{s_{n,k}}P(s_{n,k}|r_{n,k},\theta)$$

    其中,$\hat{s}{n,k}$是预测的数据符号,$r{n,k}$是接收到的OFDM信号,$\theta$是模型参数。该模型可以通过DNN深度学习网络来学习OFDM信号的映射关系,从而实现OFDM信号的检测。

   在实际应用中,需要实现实时OFDM信号检测。这可以通过将训练好的模型部署到实际系统中来实现。在实时检测过程中,需要对接收到的OFDM信号进行预处理,并将其输入到训练好的模型中进行检测。实时检测的实现需要考虑到时间延迟、资源限制等因素。

  基于DNN深度学习网络的OFDM信号检测已广泛应用于数字通信领域。它可以用于解决OFDM信号检测中的一些难题,例如频率偏移、信道估计误差、多路径干扰等。此外,它还可以用于无线电频谱感知、无线电干扰检测等领域。

4.部分核心程序

```Transmitted_signal = OFDM_Transmitter(data_in_IFFT, NFFT, NCP);

    %信道
    Ray_h_ofdm             = (1 / sqrt(2)) * randn(len_symbol, 1) + (1 / sqrt(2)) * 1j * randn(len_symbol, 1); % Rayleigh channel coff
    Rayleigh_h_channel     = repmat(Ray_h_ofdm, Frame_size, 1);
    Rayleigh_Fading_Signal = awgn(Rayleigh_h_channel .* Transmitted_signal,SNR,'measured');
    signal_ideal           = Rayleigh_Fading_Signal ./ Rayleigh_h_channel;

    Multitap_h = [(randn + 1j * randn);...
                  (randn + 1j * randn) / 24] ;

    %卷积通过信道
    Multipath_Signal        = conv(Transmitted_signal, Multitap_h);

    Multipath_Signal        = awgn(Multipath_Signal(1 : length(Transmitted_signal)),SNR,'measured');
    % OFDM 接收
    [Rsignals0, Rsignalsh0] = OFDM_Receiver(Multipath_Signal, NFFT, NCP, len_symbol, signal_ideal);

    % 进行深度学习部分,使用已训练好的神经网络进行解调
    [DNN_feature_signal, ~, ~] = Extract_Feature_OFDM(Rsignals0, dataSym(1:2), M, QPSK_signal(1:8));
    Received_data_DNN          = predict(DNN_Trained, DNN_feature_signal);
    Received_data_DNN          = transpose(Received_data_DNN);
    DNN_Received_data          = Received_data_DNN(1:2:end, :) + 1j * Received_data_DNN(2:2:end, :);

    DNN_dataSym_Rx             = QPSK_Demodulator(DNN_Received_data);

    DNN_dataSym_Received       = de2bi(DNN_dataSym_Rx, 2);
    DNN_Data_Received          = reshape(DNN_dataSym_Received, [], 1);

    DNN_sym_err(ij, 1)         = sum(sum(round(dataSym(1:8)) ~= round(DNN_dataSym_Rx)));
    DNN_bit_err(ij, 1)         = sum(sum(round(reshape(de2bi(dataSym(1:8), 2),[],1)) ~= round(DNN_Data_Received)));  
end
Bers(idx, 1) = sum(DNN_bit_err, 1) / N_bits_DNN; % 计算平均比特误码率
Sers(idx, 1) = sum(DNN_sym_err, 1) / N_QPSK_DNN; % 计算平均符号误码率

```

相关文章
|
10天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
10天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
10天前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
43 0
|
机器学习/深度学习 算法 PyTorch
OpenCV-图像着色(采用DNN模块导入深度学习模型)
OpenCV-图像着色(采用DNN模块导入深度学习模型)
298 0
来自OpenCv的DNN模块助力图像分类任务
来自OpenCv的DNN模块助力图像分类任务
246 0
来自OpenCv的DNN模块助力图像分类任务
|
机器学习/深度学习 数据库 SQL
|
机器学习/深度学习
DNN 模块MVP 模式学习中的一些问题
为了让View部分可以测试,我们使用interface来分离View和业务逻辑的耦合。 我的问题是: Q:对于在aspx.design.cs中声明的控件,我们也需要在interface中声明吗?如果要声明,那么在aspx.design.cs中的控件声明是不是就是interface的实现? 我们不能在interface直接声明跟aspx.design.cs控件同名的变量,我们应该认为aspx.design.cs中的控件就是view的一部分,我们无法控制。
521 0
|
机器学习/深度学习 前端开发
介绍一些免费的DNN模块
Administration Advanced Control Panel Free fully featured ajax enabled control panel replacement for Dot...
877 0
|
机器学习/深度学习
如何使用NAnt 自动打包DNN模块 之一
一、安装NAnt 每次开发完毕一个DNN模块的版本,打包DNN模块是一件很繁琐的事情。更重要的是,为每一个发布的版本做一个安装包如果用手工管理和容易出错。这里介绍一下如何使用NAnt自动打包模块。 首先需要下载NAnt,http://sourceforge.net/projects/nant/ 下载之后解压这个ZIP包 解压之后的目录重名名为NAnt,拷贝到c:下面。
1005 0
|
机器学习/深度学习 SEO
介绍几个DNN SEO模块,可免费试用的
iFinity Url Master - Get the best SEO results by taking control of your DNN urls iFinity Tagger - Tag your DNN content and create specific, target...
655 0