基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真

简介: 基于AutoEncoder自编码器的MNIST手写数字数据库识别matlab仿真

1.算法理论概述
MNIST手写数字数据库是机器学习中常用的数据集,包含了0到9这10个数字的手写图片。本文介绍一种基于AutoEncoder自编码器的MNIST手写数字识别算法,通过训练自编码器对MNIST数据集进行特征提取和降维,对提取的特征进行分类识别。该算法在MNIST数据集上表现良好,并且具有较高的识别准确率。
该算法的主要步骤如下:

第一步:数据预处理
从MNIST数据库中加载手写数字图片,对图片进行预处理,将像素值缩放到[0, 1]范围内,以便于神经网络的训练。

第二步:构建AutoEncoder自编码器
自编码器是一种无监督学习的神经网络,用于将输入数据经过编码和解码过程后,重构与原始输入相似的输出。在该算法中,构建一个多层的自编码器网络,包括输入层、编码层和解码层。编码层的神经元数量较少,从而实现对输入数据的降维。具体步骤如下:

a) 输入层:将MNIST手写数字图片展平为一个一维向量,作为自编码器的输入。
b) 编码层:选择适当的神经元数量,将输入特征进行编码,得到编码后的特征向量。
c) 解码层:通过反向传播算法优化网络参数,实现对编码特征的解码,得到重构后的输出。
d) 损失函数:定义一个适当的损失函数,衡量重构输出与原始输入之间的差异,通过最小化损失函数优化网络参数。
自编码器的前向传播过程

0011414e4464a13afb9f83f9d534c9a4_82780907_202309121501100332960276_Expires=1694502670&Signature=TfUEiSMPXdEamppqEoCA3K%2BGKyw%3D&domain=8.png

   基于AutoEncoder自编码器的MNIST手写数字数据库识别算法是一种有效的图像分类算法。通过自编码器进行特征提取和降维,可以得到较低维度的特征表示,可以在MNIST数据集上取得较高的识别准确率。该算法也可以扩展到其他图像识别任务中,具有较好的通用性和适用性。在实际应用中,可以根据具体情况对自编码器和SVM进行参数调优,进一步提高识别性能和效率。 

2.算法运行软件版本
MATLAB2022a

3.算法运行效果图预览
2.jpeg
3.jpeg
4.png
5.png
6.jpeg

4.部分核心程序

hiddenSize1 = 100;
autoenc1    = trainAutoencoder(xTrainImages,hiddenSize1,'MaxEpochs',500,'L2WeightRegularization',0.004,'SparsityRegularization',4,'SparsityProportion',0.15,'ScaleData',false);
figure
plotWeights(autoenc1);

view(autoenc1)

%获取第一个自动编码器的特征
feat1 = encode(autoenc1,xTrainImages);
view(softnet)

% 将自动编码器和softmax分类层堆叠成深度神经网络(Deep Neural Network,DNN)
deepnet = stack(autoenc1,autoenc2,softnet);

view(deepnet)


%进行识别
tmp2s = imgs(:,:,1);
y = deepnet(tmp2s(:));
y
[V,I] = max(y);
disp('识别结果为:');
相关文章
|
3天前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
11 1
|
3天前
|
机器学习/深度学习 算法
基于小波神经网络的数据分类算法matlab仿真
该程序基于小波神经网络实现数据分类,输入为5个特征值,输出为“是”或“否”。使用MATLAB 2022a版本,50组数据训练,30组数据验证。通过小波函数捕捉数据局部特征,提高分类性能。训练误差和识别结果通过图表展示。
|
3天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
24天前
|
SQL 关系型数据库 MySQL
【揭秘】MySQL binlog日志与GTID:如何让数据库备份恢复变得轻松简单?
【8月更文挑战第22天】MySQL的binlog日志记录数据变更,用于恢复、复制和点恢复;GTID为每笔事务分配唯一ID,简化复制和恢复流程。开启binlog和GTID后,可通过`mysqldump`进行逻辑备份,包含binlog位置信息,或用`xtrabackup`做物理备份。恢复时,使用`mysql`命令执行备份文件,或通过`innobackupex`恢复物理备份。GTID模式下的主从复制配置更简便。
108 2
|
19天前
|
弹性计算 关系型数据库 数据库
手把手带你从自建 MySQL 迁移到云数据库,一步就能脱胎换骨
阿里云瑶池数据库来开课啦!自建数据库迁移至云数据库 RDS原来只要一步操作就能搞定!点击阅读原文完成实验就可获得一本日历哦~
|
22天前
|
关系型数据库 MySQL 数据库
RDS MySQL灾备服务协同解决方案构建问题之数据库备份数据的云上云下迁移如何解决
RDS MySQL灾备服务协同解决方案构建问题之数据库备份数据的云上云下迁移如何解决
|
19天前
|
人工智能 小程序 关系型数据库
【MySQL】黑悟空都掌握的技能,数据库隔离级别全攻略
本文以热门游戏《黑神话:悟空》为契机,深入浅出地解析了数据库事务的四种隔离级别:读未提交、读已提交、可重复读和串行化。通过具体示例,展示了不同隔离级别下的事务行为差异及可能遇到的问题,如脏读、不可重复读和幻读等。此外,还介绍了在MySQL中设置隔离级别的方法,包括全局和会话级别的调整,并通过实操演示了各隔离级别下的具体效果。本文旨在帮助开发者更好地理解和运用事务隔离级别,以提升数据库应用的一致性和性能。
96 2
【MySQL】黑悟空都掌握的技能,数据库隔离级别全攻略
|
25天前
|
数据可视化 关系型数据库 MySQL
Mysql8 如何在 Window11系统下完成跳过密钥校验、完成数据库密码的修改?
这篇文章介绍了如何在Windows 11系统下跳过MySQL 8的密钥校验,并通过命令行修改root用户的密码。
Mysql8 如何在 Window11系统下完成跳过密钥校验、完成数据库密码的修改?
|
22天前
|
SQL 关系型数据库 MySQL
【MySQL 慢查询秘籍】慢SQL无处遁形!实战指南:一步步教你揪出数据库性能杀手!
【8月更文挑战第24天】本文以教程形式深入探讨了MySQL慢SQL查询的分析与优化方法。首先介绍了如何配置MySQL以记录执行时间过长的SQL语句。接着,利用内置工具`mysqlslowlog`及第三方工具`pt-query-digest`对慢查询日志进行了详细分析。通过一个具体示例展示了可能导致性能瓶颈的查询,并提出了相应的优化策略,包括添加索引、缩小查询范围、使用`EXPLAIN`分析执行计划等。掌握这些技巧对于提升MySQL数据库性能具有重要意义。
50 1
|
23天前
|
关系型数据库 MySQL Linux
在Linux中,如何配置数据库服务器(如MySQL或PostgreSQL)?
在Linux中,如何配置数据库服务器(如MySQL或PostgreSQL)?