基于LEACH路由协议的网络性能matlab仿真,包括数据量,能耗,存活节点

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: - **LEACH协议**在WSN中通过分簇减少能耗,普通节点向最近簇头发送数据,簇头融合后发送给基站。本项目研究LEACH在不同初始能量、数据包及控制包长度条件下的网络性能,如剩余节点、能量、接收数据量和累计接收量。

1.程序功能描述
LEACH的原理在于它将传感器节点分为两类:簇头节点和普通节点。普通节点将数据发送给距离自己最近的簇头节点,然后簇头节点将收集到的数据融合后发送给基站。这种机制可以减少网络中节点的能耗,并且能够提高数据融合比例,减少传输数据量。本课题将分别对比leach协议在不同初始能量,不同数据包长度,以及不同控制包长度的条件下,网络的剩余节点数目,剩余能量,网络接收到的数据量以及网络累计接收数据量。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg
9.jpeg
10.jpeg
11.jpeg
12.jpeg

3.核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

x_area           = 100; %仿真场地大小  
y_area           = 100;
Num_sink         = 200; %节点数目
packet_Length    = 4000;%数据包长度    
ctrPacket_Length = 100; %控制包长度
rmax             = 2000;
Eo               = 0.3;%初始能量

%运行leach代码
[least_sink_number1,least_engry1,get_data_per_sink1,get_data_all1] = func_Leach(x_area,y_area,Num_sink,packet_Length,ctrPacket_Length,rmax,Eo);
Eo               = 0.4;%初始能量
[least_sink_number2,least_engry2,get_data_per_sink2,get_data_all2] = func_Leach(x_area,y_area,Num_sink,packet_Length,ctrPacket_Length,rmax,Eo);
Eo               = 0.5;%初始能量
[least_sink_number3,least_engry3,get_data_per_sink3,get_data_all3] = func_Leach(x_area,y_area,Num_sink,packet_Length,ctrPacket_Length,rmax,Eo);




steps=40;
figure;
plot(1:steps:length(least_sink_number1),least_sink_number1(1:steps:end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:steps:length(least_sink_number2),least_sink_number2(1:steps:end),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:steps:length(least_sink_number3),least_sink_number3(1:steps:end),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;

grid on;
title('剩余节点数目个数');
legend('初始能量0.3','初始能量0.4','初始能量0.5');


figure;
plot(1:steps:length(least_engry1),least_engry1(1:steps:end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:steps:length(least_engry2),least_engry2(1:steps:end),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:steps:length(least_engry3),least_engry3(1:steps:end),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
title('剩余能量');
legend('初始能量0.3','初始能量0.4','初始能量0.5');



figure;
plot(1:steps:length(get_data_per_sink1),get_data_per_sink1(1:steps:end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:steps:length(get_data_per_sink2),get_data_per_sink2(1:steps:end),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:steps:length(get_data_per_sink3),get_data_per_sink3(1:steps:end),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;

grid on;
title('节点接收到的数据');
legend('初始能量0.3','初始能量0.4','初始能量0.5');



figure;
plot(1:steps:length(get_data_all1),get_data_all1(1:steps:end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:steps:length(get_data_all2),get_data_all2(1:steps:end),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:steps:length(get_data_all3),get_data_all3(1:steps:end),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;


grid on;
title('累计接收到的数据');
legend('初始能量0.3','初始能量0.4','初始能量0.5');
12_003m

4.本算法原理
LEACH(Low Energy Adaptive Clustering Hierarchy)是一种应用于无线传感器网络的分层路由协议。它的主要目标是通过自适应地创建和调整集群来延长网络的生命周期。LEACH的实现基于以下原理和数学公式。

    LEACH的原理在于它将传感器节点分为两类:簇头节点和普通节点。普通节点将数据发送给距离自己最近的簇头节点,然后簇头节点将收集到的数据融合后发送给基站。这种机制可以减少网络中节点的能耗,并且能够提高数据融合比例,减少传输数据量。

   在LEACH中,每个节点都有一个阈值,当节点的能量低于这个阈值时,该节点就会停止作为簇头节点的工作,转为普通节点。这个阈值是通过以下公式计算的:

Threshold = P * num_of_cluster_heads

其中,P是一个预先设定的常量,num_of_cluster_heads是网络中簇头节点的数量。

   在LEACH中,节点首先随机选择是否成为簇头节点。如果它选择成为簇头节点,那么它会向网络中所有其他节点广播一个包含自己ID和成为簇头节点意愿的消息。当消息收到时,普通节点会根据距离簇头节点的远近,以及节点的剩余能量来选择加入哪个簇。

在仿真过程中,我们需要考虑以下几个性能指标:

1.数据量

    在LEACH中,每个簇头节点收集并融合其所属簇内所有节点的数据,然后发送给基站。因此,数据量的大小与簇内节点的数量以及每个节点发送的数据量有关。我们可以使用以下公式来计算数据量:

Data = num_of_cluster_heads num_of_nodes_per_cluster data_per_node

其中,num_of_cluster_heads是簇头节点的数量,num_of_nodes_per_cluster是每个簇内的节点数量,data_per_node是每个节点发送的数据量。

  1. 能耗

    在LEACH中,节点的能耗主要来自于发送和接收数据,以及进行数据融合的能耗。我们可以使用以下公式来计算网络的总能耗:
    

    Total_Energy = Energy_Transmit + Energy_Receive + Energy_Fusion

其中,Energy_Transmit是发送数据的能耗,Energy_Receive是接收数据的能耗,Energy_Fusion是进行数据融合的能耗。这些能耗可以通过每个节点的传输距离、传输速率、处理能力等因素计算得出。

  1. 存活节点

     在仿真过程中,我们需要追踪网络中存活节点的数量。存活节点是指其能量仍高于阈值的节点。在LEACH中,如果节点的能量低于阈值,它会停止作为簇头节点的工作,转为普通节点。我们可以通过以下公式来计算存活节点的数量:
    

    Num_Alive_Nodes = num_of_nodes - num_of_dead_nodes

     其中,num_of_nodes是网络中总节点的数量,num_of_dead_nodes是网络中已经死亡的节点的数量。
    
     以上就是基于LEACH路由协议的网络性能的matlab仿真的基本原理、数学公式以及性能指标的详细介绍。在实际仿真过程中,还需要考虑其他许多因素,例如节点的分布、传输模型的选取、数据融合算法的优化等。这些因素都会对仿真结果产生影响,因此需要根据实际应用场景进行合理的设定和分析。
    
相关文章
|
18天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
11天前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
25天前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
14天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
22天前
|
算法 数据安全/隐私保护
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
15天前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
22天前
|
算法 安全 数据安全/隐私保护
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
|
25天前
|
算法 数据安全/隐私保护
基于分数Talbot效应的阵列光学涡旋产生matlab模拟与仿真
本程序基于分数Talbot效应,使用MATLAB(2013b版本)模拟与仿真光学涡旋阵列的生成,测试了正方形、旋转正方形和六边形三种阵列形状下的光学涡旋效果。分数Talbot效应是经典Talbot效应的推广,可精确控制衍射光场在任意距离处的重现,生成复杂光场分布,包括光学涡旋阵列。程序运行结果展示无水印,核心代码完整,适用于研究分数Talbot效应对光学涡旋的应用场景。
下一篇
oss创建bucket