✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
❤️ 内容介绍
智能优化算法是一种通过模拟自然界中的生物进化和行为来解决复杂问题的方法。这些算法通过模拟自然界中的优化过程,以寻找最优解或接近最优解的解决方案。在过去的几十年中,许多智能优化算法已经被提出和应用于各种领域,如工程设计、机器学习和数据挖掘等。
在本文中,我们将介绍一种新的智能优化算法——基于暴龙优化算法(TROA)的单目标优化问题求解方法。TROA是一种模拟暴龙群体行为的算法,通过模拟暴龙狩猎、迁徙和竞争等行为来解决优化问题。
TROA算法的基本思想是将优化问题转化为一个暴龙群体的生态系统模型。在这个模型中,每个暴龙代表一个解决方案,而暴龙的适应度则表示该解决方案的优劣程度。算法通过模拟暴龙的狩猎行为来更新解决方案,以寻找更好的解决方案。具体来说,算法首先初始化一个暴龙群体,然后通过计算每个暴龙的适应度来评估解决方案的质量。接下来,算法通过模拟暴龙的迁徙行为来更新解决方案,以增加解决方案的多样性。最后,算法通过模拟暴龙的竞争行为来选择优秀的解决方案,并将其作为下一代暴龙的种子。
与其他智能优化算法相比,TROA具有以下几个优点。首先,TROA通过模拟暴龙的行为来解决优化问题,而暴龙在自然界中以其强大的狩猎能力和竞争力而闻名。因此,TROA可以更好地捕捉到问题的特征和结构,从而提供更好的解决方案。其次,TROA具有较好的全局搜索能力和局部搜索能力,可以在搜索空间中寻找到全局最优解或接近最优解的解决方案。最后,TROA具有较好的收敛性和稳定性,可以在较短的时间内找到满意的解决方案。
然而,TROA也存在一些挑战和限制。首先,TROA的性能高度依赖于参数的设置,不同参数的选择可能导致不同的结果。因此,如何选择合适的参数是一个关键问题。其次,TROA可能陷入局部最优解,特别是在问题的搜索空间非常复杂或存在多个局部最优解的情况下。因此,如何提高TROA的局部搜索能力是一个重要的研究方向。
总之,基于暴龙优化算法的单目标优化问题求解方法是一种新颖而有效的智能优化算法。通过模拟暴龙的行为,TROA可以更好地捕捉到问题的特征和结构,并提供更好的解决方案。然而,TROA也面临一些挑战和限制,需要进一步的研究和改进。我们相信,在未来的研究中,TROA将在各个领域中发挥重要作用,并为解决复杂问题提供更好的解决方案。
🔥核心代码
function [lowerbound,upperbound,dimension,fitness] = fun_info(F)switch F case 'F1' fitness = @F1; lowerbound=-100; upperbound=100; dimension=30; case 'F2' fitness = @F2; lowerbound=-10; upperbound=10; dimension=30; case 'F3' fitness = @F3; lowerbound=-100; upperbound=100; dimension=30; case 'F4' fitness = @F4; lowerbound=-100; upperbound=100; dimension=30; case 'F5' fitness = @F5; lowerbound=-30; upperbound=30; dimension=30; case 'F6' fitness = @F6; lowerbound=-100; upperbound=100; dimension=30; case 'F7' fitness = @F7; lowerbound=-1.28; upperbound=1.28; dimension=30; case 'F8' fitness = @F8; lowerbound=-500; upperbound=500; dimension=30; case 'F9' fitness = @F9; lowerbound=-5.12; upperbound=5.12; dimension=30; case 'F10' fitness = @F10; lowerbound=-32; upperbound=32; dimension=30; case 'F11' fitness = @F11; lowerbound=-600; upperbound=600; dimension=30; case 'F12' fitness = @F12; lowerbound=-50; upperbound=50; dimension=30; case 'F13' fitness = @F13; lowerbound=-50; upperbound=50; dimension=30; case 'F14' fitness = @F14; lowerbound=-65.536; upperbound=65.536; dimension=2; case 'F15' fitness = @F15; lowerbound=-5; upperbound=5; dimension=4; case 'F16' fitness = @F16; lowerbound=-5; upperbound=5; dimension=2; case 'F17' fitness = @F17; lowerbound=[-5,0]; upperbound=[10,15]; dimension=2; case 'F18' fitness = @F18; lowerbound=-2; upperbound=2; dimension=2; case 'F19' fitness = @F19; lowerbound=0; upperbound=1; dimension=3; case 'F20' fitness = @F20; lowerbound=0; upperbound=1; dimension=6; case 'F21' fitness = @F21; lowerbound=0; upperbound=10; dimension=4; case 'F22' fitness = @F22; lowerbound=0; upperbound=10; dimension=4; case 'F23' fitness = @F23; lowerbound=0; upperbound=10; dimension=4; endend% F1function R = F1(x)R=sum(x.^2);end% F2function R = F2(x)R=sum(abs(x))+prod(abs(x));end% F3function R = F3(x)dimension=size(x,2);R=0;for i=1:dimension R=R+sum(x(1:i))^2;endend% F4function R = F4(x)R=max(abs(x));end% F5function R = F5(x)dimension=size(x,2);R=sum(100*(x(2:dimension)-(x(1:dimension-1).^2)).^2+(x(1:dimension-1)-1).^2);end% F6function R = F6(x)R=sum(abs((x+.5)).^2);end% F7function R = F7(x)dimension=size(x,2);R=sum([1:dimension].*(x.^4))+rand;end% F8function R = F8(x)R=sum(-x.*sin(sqrt(abs(x))));end% F9function R = F9(x)dimension=size(x,2);R=sum(x.^2-10*cos(2*pi.*x))+10*dimension;end% F10function R = F10(x)dimension=size(x,2);R=-20*exp(-.2*sqrt(sum(x.^2)/dimension))-exp(sum(cos(2*pi.*x))/dimension)+20+exp(1);end% F11function R = F11(x)dimension=size(x,2);R=sum(x.^2)/4000-prod(cos(x./sqrt([1:dimension])))+1;end% F12function R = F12(x)dimension=size(x,2);R=(pi/dimension)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dimension-1)+1)./4).^2).*...(1+10.*((sin(pi.*(1+(x(2:dimension)+1)./4)))).^2))+((x(dimension)+1)/4)^2)+sum(Ufun(x,10,100,4));end% F13function R = F13(x)dimension=size(x,2);R=.1*((sin(3*pi*x(1)))^2+sum((x(1:dimension-1)-1).^2.*(1+(sin(3.*pi.*x(2:dimension))).^2))+...((x(dimension)-1)^2)*(1+(sin(2*pi*x(dimension)))^2))+sum(Ufun(x,5,100,4));end% F14function R = F14(x)aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];for j=1:25 bS(j)=sum((x'-aS(:,j)).^6);endR=(1/500+sum(1./([1:25]+bS))).^(-1);end% F15function R = F15(x)aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;R=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);end% F16function R = F16(x)R=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);end% F17function R = F17(x)R=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;end% F18function R = F18(x)R=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*... (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));end% F19function R = F19(x)aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];R=0;for i=1:4 R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F20function R = F20(x)aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];cH=[1 1.2 3 3.2];pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;....2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];R=0;for i=1:4 R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F21function R = F21(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:5 R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F22function R = F22(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:7 R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F23function R = F23(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:10 R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endendfunction R=Ufun(x,a,k,m)R=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));end
❤️ 运行结果
⛄ 参考文献
Venkata Satya Durga Manohar Sahu, Padarbinda Samal, Chinmoy Kumar Panigrahi,”Tyrannosaurus optimization algorithm: A new nature-inspired meta-heuristic algorithm for solving optimal control problems”,e-Prime - Advances in Electrical Engineering, Electronics and Energy,Volume 5,2023,100243,ISSN 2772-6711,https://doi.org/10.1016/j.prime.2023.100243.