【附下载】实时数仓架构设计与选型

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 【附下载】实时数仓架构设计与选型

这是彭文华的第99篇原创

好几位朋友在后台留言,说要看看各大厂都是咋玩实时数仓的。其实,实时数仓和离线数仓在模型设计的时候是一样一样的,只是需要计算引擎和存储不太一样而已。然后再解决实时计算场景中的几个问题就齐了。今天给大家分享实时数仓的架构。





实时计算架构选型

目前实时架构方法是Lambda和Kappa。

1、Lambda 架构

Lambda架构核心就三个:批数据处理层、流数据处理层和服务层。批数据处理层应对历史长时间数据计算,流数据处理层应对短时间实时数据计算。如果一个需求要历史到当前所有数据的累加结果,那就在服务层将两部分数据进行累加就好了。

Lambda架构需要维护两套计算引擎,如果需要历史到现在实时数据的累加,则需要在两边同时做相同的计算,然后还得加总一下,非常麻烦。因此就有了最近非常火热的Kappa架构。

appa 架构

Kappa架构的设计很有意思。Lambda架构反正还是分离线和实时两部分的,所以可以从离线库和实时消息队列取数,分别计算后,在服务层加总就可以了。

Kappa的设计理念是:干脆不要离线了,全部都进行流式计算。流式计算的数据来源是消息队列,那我把所有需要计算的数据放在消息队列里就好了,然后让流计算引擎计算所有数据不就好了?

因为所有数据都存在Kafka,上面接Flink批流一体数据处理引擎将kafka的数据计算好存在服务层的table n中。如果需求有变化了,就讲kafka的offset调整一下,Flink则重启一个任务重新计算,存在table N+1中,当N+1的数据进度赶上table n了,就停掉table n的任务。


最后对比一下两种架构的优劣势:

没有最好的架构,只有最合适的架构。目前虽然流批一体的Kappa架构是最新最火的架构模式,但是绝大多数大厂现在仍然采用批流分离的Lambda架构。Lambda架构的问题不仅是要维护两套代码,更关键的是这两套代码跑出来的数据压根就不一致!误差率再少,乘以一个很大的基数,这差别就大了。我关注到微信公众号后台的实时数据和离线结果就不一样,应该就是用的Lambda架构。


不是因为技术能力不行,而是因为Kappa也有他的一些问题,在批处理上比较弱,数据回溯也比较费劲,所有应用场景有限。即便Kappa能解决这些问题,想要全面替换原有体系,也是需要时间和人力成本的。

所以即便是用了Flink,也都是作为Lambda架构中流式计算的一个分支,或者在特定场景中才使用流批一体。


实时计算产品选型

不管是Lambda还是kappa架构,实时计算都需要有数据源、数据通道、实时计算引擎和存储引擎这几个部分。

数据源基本都是各种日志,有些时候也需要读取一些离线存储的数据,比如各种维度信息等。

数据通道基本就是Kafka、RocketMQ等消息中间件。

实时计算引擎目前只有Storm、SparkStreaming和Flink。

存储就比较多了,分为类型也不一样,可以分为面向查询的各种存储、面向维度分析的OLAP、面向大型应用的数据湖。

所有的组件都已经给你梳理了一下,供各位参考:

这里重点说一下存储。如果算完之后直接接大屏等应用,建议用redis;如果要快速查询,建议接Hbase、ES等,如果还有后续操作,建议扔kafka里,如果要结构化落地,建议MySQL里。

如果要接OLAP,做多维分析,可以在OLAP里选,准实时多维用Impala、GP、Presto、Doris、kudu等都行,大宽表就用ES、CK、Druid。

如果要接后续大量应用,就用数据湖,目前基本就Hudi、IceBerg、Delta三种,字节用Hudi,腾讯在推IceBerg。

其实OLAP还有一个比较出名的Kylin,但是这玩意要预计算,实在不太适合实时数仓,所以就没列。

另外,超大厂还会自研一些组件,比如阿里的Hologres,滴滴的ddmq,美团的celler、mkafka等,这就不往里写了,没有参考意义。


各大厂实时数仓实践

美团外卖实时数仓选型及分层架构:

美团的这张图看起来很舒畅,数据源是各种log,通过消息队列(kafka、mafka)流向实时和准实时两条线,实时用Flink、Storm,最后扔到redis、durid、Hbase里面,准实时用Doris。详情可见附件。


字节跳动实时数仓选型及分层架构:

其实每个大厂都会尝试很多技术。比如字节就有批、微批和流式三种处理。字节的实时走的是Flink,整个架构采用Lambda。


有赞实时数仓选型及分层架构:

有赞用的是kafka+Storm/Flink+Druid/Redis/Hbase的架构,而且有赞的这篇文章详细的阐述了实时数仓的迭代过程,很有参考意义。


这里就不再多放了,至于实时数据湖,目前也没几个能用上的,我就直接忽略了。感兴趣的可以下载文档自己研究一下。


总结

实时数仓的建模逻辑跟普通数仓建模逻辑一样一样,该分领域分领域,该分主题分主题,该分几层分几层,该建款表建款表,该做多维做多维。

变化的是原有的数据落地变成不落地,所以要解决各种流式数据中会面临到的各种问题。

数据源我们没有太多的可选范围,基本上就是Kafka、RocketMQ等消息中间件;

计算引擎建议SparkStreaming或者Flink,相比前者,Storm不太友好。如果你公司现在就有Storm,可以参考58和字节,用Flink-Strom,做一些开发工作,直接兼容。

存储引擎就根据前端的应用来选择了,前面有介绍,我这里就不重复了。


最后,给大家总结了一下各大厂实时数仓的建设架构:


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
目录
打赏
0
0
0
0
36
分享
相关文章
vivo 湖仓架构的性能提升之旅
聚焦 vivo 大数据多维分析面临的挑战、StarRocks 落地方案及应用收益。 在 **即席分析** 场景,StarRocks 使用占比达 70%,查询速度提升 3 倍,P50 耗时从 63.77 秒缩短至 22.30 秒,查询成功率接近 98%。 在 **敏捷 BI** 领域,StarRocks 已完成 25% 切换,月均查询成功数超 25 万,P90 查询时长缩短至 5 秒,相比 Presto 提升 75%。 在 **研发工具平台** 方面,StarRocks 支持准实时数据查询,数据可见性缩短至 3 分钟,查询加速使 P95 延迟降至 400 毫秒,开发效率提升 30%。
vivo 湖仓架构的性能提升之旅
网易游戏 x Apache Doris:湖仓一体架构演进之路
网易游戏 Apache Doris 集群超 20 个 ,总节点数百个,已对接内部 200+ 项目,日均查询量超过 1500 万,总存储数据量 PB 级别。
网易游戏 x Apache Doris:湖仓一体架构演进之路
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
686 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
小红书湖仓架构的跃迁之路
小红书研发工程师李鹏霖(丁典)在StarRocks年度峰会上分享了如何通过结合StarRocks和Iceberg实现极速湖仓分析架构。新架构使P90查询性能提升了3倍,查询响应时间稳定在10秒以内,存储空间减少了一半。RedBI自助分析平台支持灵活、快速的即席查询,优化了排序键和Join操作,引入DataCache功能显著提升查询性能。未来将探索近实时湖仓分析架构,进一步优化处理能力。
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
实时数仓Kappa架构:从入门到实战
【11月更文挑战第24天】随着大数据技术的不断发展,企业对实时数据处理和分析的需求日益增长。实时数仓(Real-Time Data Warehouse, RTDW)应运而生,其中Kappa架构作为一种简化的数据处理架构,通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性。本文将深入探讨Kappa架构的历史背景、业务场景、功能点、优缺点、解决的问题以及底层原理,并详细介绍如何使用Java语言快速搭建一套实时数仓。
706 4
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
139 1
云原生时代的数据库选型与架构设计
云原生时代的数据库选型与架构设计
78 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等