Python+Qt人脸识别职工录入管理系统

简介: 这篇博客针对<<Python+Qt人脸识别职工录入管理系统>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

程序示例精选

Python+Qt人脸识别职工录入管理系统

如需安装运行环境或远程调试,可点击右边主头像昵称进入个人主页查看博主联系方式,由专业技术人员远程协助!

前言

这篇博客针对<<Python+Qt人脸识别职工录入管理系统>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


文章目录

一、所需工具软件

二、使用步骤

       1. 引入库

       2. 代码实现

      3. 运行结果

三、在线协助

一、所需工具软件

1. Python

2. Qt, OpenCV

二、使用步骤

1.引入库

## coding:utf-8
import sys
import os
import csv
import cv2
from untitled import Ui_mainWindow
import record
import name
from dbase import Record2
from PyQt5 import QtWidgets
from PyQt5 import QtWidgets, QtCore, QtGui
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *

image.gif

2. 代码实现

代码如下:

class myWin(QtWidgets.QMainWindow, Ui_mainWindow):
    def __init__(self):
        super(myWin, self).__init__()
        self.setupUi(self)
        self.pushButton_4.clicked.connect(self.onVideo) 
        self.open_flag = False  
        self.painter = QPainter(self)  
        self.pushButton.clicked.connect(self.openFileButton)
        self.pushButton_2.clicked.connect(self.open_name_ui)
        self.pushButton_7.clicked.connect(self.train)
        #self.pushButton_6.clicked.connect(self.faceRecog)
        self.pushButton_3.clicked.connect(self.open_second_ui)
        self.pushButton_5.clicked.connect(self.threadRun)
        self.pushButton_6.clicked.connect(self.switch_video)
        self.timer2 = VideoTimer()
        self.timer2.timeSignal.signal[str].connect(self.videoRecog2)
        self.pushButton_8.clicked.connect(self.recogConform)
        self.pushButton.hide()
        self.pushButton_4.hide()
    def threadRun(self):
        # thread1.start()
        if self.pushButton_5.text() == "模型初始化thread":
            threadSetup()
            # thread1.start()
            self.pushButton_5.setText("停止模型thread")
        elif self.pushButton_5.text() == "停止模型thread":
            # stop_thread(thread1)
            # stop_thread(threadT)
            threadStop()
            print("tttt6")
            self.pushButton_5.setText("模型初始化thread")
    def closeEvent2(self, event):
        self.box = QMessageBox(QMessageBox.Warning, "系统提示信息", "是否暂停摄像头?")
        qyes = self.box.addButton(self.tr("是"), QMessageBox.YesRole)
        qno = self.box.addButton(self.tr("否"), QMessageBox.NoRole)
        self.box.exec_()
        if self.box.clickedButton() == qyes:
            self.label.clear()
            while 1:
                if cv2.waitKey(1) == ord('q'):
                    break
            self.cap.release()
            cv2.destroyAllWindows()
        else:
            event.ignore()
    def closethreed(self):
        print("test")
    # # 退出系统窗口 X 绑定函数事件
    def closeEvent(self, event):
        # print("test")
        self.box = QMessageBox(QMessageBox.Warning, "系统提示信息", "是否退出系统?")
        qyes = self.box.addButton(self.tr("是"), QMessageBox.YesRole)
        qno = self.box.addButton(self.tr("否"), QMessageBox.NoRole)
        self.box.exec_()
        if self.box.clickedButton() == qyes:
            try:
                threadStop()
            except:
                print("abnormal")
            event.accept()
            QtWidgets.QWidget.closeEvent(self, event)
            sys.exit().accept()
        else:
            event.ignore()
    def switch_video(self):
        # self.timer2.start()
        if self.pushButton_6.text() == "开始检测":
            self.timer2.start()
            print("tttt6")
            self.pushButton_6.setText("暂停检测")
        elif self.pushButton_6.text() == "暂停检测":
            self.timer2.stop()
            print("tttt6")
            self.pushButton_6.setText("开始检测")
    def videoRecog2(self):
        # print("im02: ",im02)
        import cv2
        import numpy as np
        count = 0
        recognizer = cv2.face.LBPHFaceRecognizer_create()
        recognizer.read('face_trainer/trainer.yml')
        cascadePath = "haarcascade_frontalface_default.xml"
        faceCascade = cv2.CascadeClassifier(cascadePath)
        font = cv2.FONT_HERSHEY_SIMPLEX
        print("11")
        gray = cv2.cvtColor(im02, cv2.COLOR_BGR2GRAY)
        faces = faceCascade.detectMultiScale(
            gray,
            scaleFactor=1.2,
            minNeighbors=5,
        )
        if len(faces) == 0:
            print("len(faces)", len(faces))
            frame = cv2.cvtColor(im02, cv2.COLOR_BGR2RGB)
            height, width, bytesPerComponent = frame.shape
            bytesPerLine = bytesPerComponent * width
            self.q_image = QtGui.QImage(frame.data, width, height, bytesPerLine, QtGui.QImage.Format_RGB888).scaled(self.label.height() * 1.5, self.label.height())
            self.label.setPixmap(QPixmap.fromImage(self.q_image))
            self.update()  
        if len(faces) == 1:
            for (x, y, w, h) in faces:
                idnum, confidence = recognizer.predict(gray[y:y + h, x:x + w])
                print("confidence", confidence)
                print("idnum", idnum)
                # cv2.putText(img, str(username), (x + 5, y - 5), font, 1, (0, 0, 255), 1)
                confidence2 = round(160 - confidence)
                if confidence2 > 80:
                    cv2.rectangle(im02, (x, y), (x + w, y + h), (0, 255, 0), 3)
                    cv2.putText(im02, str(confidence2) + "%", (x + 5, y + h - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                (37, 46, 6), 1)
                if confidence2 <= 80:
                    cv2.rectangle(im02, (x, y), (x + w, y + h), (255, 0, 0), 3)
                    cv2.putText(im02, "unknow", (x + 5, y + h - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                (37, 46, 6), 1)
                frame = cv2.cvtColor(im02, cv2.COLOR_BGR2RGB)
                height, width, bytesPerComponent = frame.shape
                bytesPerLine = bytesPerComponent * width
                self.q_image = QtGui.QImage(frame.data, width, height, bytesPerLine, QtGui.QImage.Format_RGB888) \
                    .scaled(self.label.height() * 1.5, self.label.height())
                self.label.setPixmap(QPixmap.fromImage(self.q_image))
                self.update()

image.gif

3. 运行结果

image.gif


三、在线协助:

如需安装运行环境或远程调试, 可点击右边 主头像 昵称 进入个人主页查看博主联系方式 ,由专业技术人员远程协助! 1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导 3)界面美化
4)软件制作


博主推荐文章:python人脸识别统计人数qt窗体-CSDN博客

博主推荐文章:Python Yolov5火焰烟雾识别源码分享-CSDN博客

                        Python OpenCV识别行人入口进出人数统计_python识别人数-CSDN博客

个人博客主页:alicema1111的博客_CSDN博客-Python,C++,网页领域博主

博主所有文章点这里:alicema1111的博客_CSDN博客-Python,C++,网页领域博主


相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
1月前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
2月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
132 66
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
1月前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
32 3
|
2月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
69 4
基于Python深度学习的果蔬识别系统实现
|
2月前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
64 5

热门文章

最新文章

推荐镜像

更多