【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

简介: 客观评价方法中的一种,亦称为理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最优解和最劣解,通过计算每个方案到理想方案的相对贴近度,即靠近止理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

文章目录


TOPSIS简介

方法和原理

         数学定义

                   数学语言描述

                   现实案例

         正负理想解

                   定义

                   实例

         量纲

TOPSIS法的算法步骤

        1.用向量规范化的方法求得规范决策矩阵

        2.构成加权规范阵C=(c~ij~)~m*n~

        3.确定正负理想解的距离

        4.计算各方案到正理想解与负理想解的距离

        5.计算各方案的综合评价指数

        6.排列方案的优劣次序


TOPSIS简介

客观评价方法中的一种,亦称为理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最优解和最劣解,通过计算每个方案到理想方案的相对贴近度,即靠近止理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。


方法和原理

数学定义

数学语言描述

设多属性决策方案集为D={d1,d2,…,dm},衡量方案优劣的属性变量为x1,…,xn,,这时方案集D中的每个方案di( i= 1,…,m )的n个属性值构成的向量是[Ai1,…,Ain],它作为n维空间中的一个点,能唯一地表征方案di。


现实案例

例如评价经济的发展水平

d1代表山东,d2代表江苏,d3代表北京……就是一共有m个待评价方案。

x1是绿化面积,x2是人均GDP,x3是经济总量……共有n个属性值。

其中能够展现山东的经济发展水平有绿化面积、人均GDP、经济总量等n个指标。而Ai1就是山东绿化的总面积、Ai2为山东GDP总量……


正负理想解

定义

正理想解C是一个方案集D中并不存在的虚拟的最佳方案,它的每个属性值都是决策矩阵中该属性的最好值;而负理想解C0则是虚拟的最差方案,它的每个属性值都是决策矩阵中该属性的最差值。在n维空间中,将方案集D中的各备选方案di与正理想解C和负理想解C0的距离进行比较,既靠近正理想解又远离负理想解的方案就是方案集D中的最佳方案;并可以据此排定方案集D中各备选方案的优先序。


实例


评价表中哪五个研究生院更好,可以虚构一个最好的研究生院标准,该虚构的研究生院的数据全为最优值,例如:

虚构研究生院6,其中它的人均专著x61为1.2,生师比x62为5(生师比为学生和老师的比值,它的值必须保持适度,适当的生师比可以促进老师和学生良好的互动,该值过高过低都不好),科研经费x63为10000,预期毕业率x64为1.8。此时,研究生院6就是正理想解C*,同理构建虚拟的最差方案负理想解C0。

015fda2cb7b50a62df94ac459887453.png


确定好正负理想解后,就可以以此来判断判断不同研究生院的优劣。下面开始描述每个研究生院与正负理想解的距离。

那么距离应该怎么算呢?当量纲不同时,方案不同数据的波动会很大,因此在计算距离时首先要排除量纲的影响,进行非量纲化。


非量纲化定义

多属性决策与评估的困难之一是属性间的不可公度性,即在属性值表中的每一列数具有不同的单位(量纲)。即使对同一属性,采用不同的计量单位,表中的数值也就不同。在用各种多属性决策方法进行分析评价时,需要排除量纲的选用对决策或评估结果的影响,这就是非量纲化。


TOPSIS法的算法步骤

1.用向量规范化的方法求得规范决策矩阵

设多属性决策问题的决策矩阵A=(aij )m*n,规范化决策矩阵B=(bij)m*n,其中


2.构成加权规范阵C=(cij)m*n

设由决策人给定各属性的权重向量为 w=[w1,w2,…,wn] ,

则 cij = wj*bij

其中 i=1,2,…,m, j =1,2,…,n.


在评价过程中,每项评价标准占比不同,让重要的指标影响大一点,不重要的指标影响小一点。

类似于成绩的计算,比较重要的语数英总分数高一些,其他副科的总分数低一些。


3.确定正负理想解的距离

理想解属性大致可以分为效益型、成本型和区间型三种,其中

正理想解:


效益最大值和成本最小值,当属性为区间型的时候要判断在哪个区间最佳。


负理想解:


效益最小值和成本最大值


4.计算各方案到正理想解与负理想解的距离

备选方案di到正理想解的距离为:


备选方案di到负理想解的距离为:


可类比两点间距离公式,该距离为n维空间内的距离


5.计算各方案的综合评价指数


计算综合评价指数公式的分子为方案到负理想解的距离,分母为为方案到负理想解的距离与方案到正理想解的距离之和,所以综合评价指数越大越好。


6.排列方案的优劣次序

按综合评价指数由大到小排列方案的优劣次序即可


实战应用

例题

研究生院试评估

为了客观地评价我国研究生教育的实际状况和各研究生院的教学质量,国务院学位委员会办公室组织过一次研究生院的评估。为了取得经验,先选5所研究生院,收集有关数据资料进行了试评估,表1是所给出的部分数据。


解答步骤

数据的预处理

数据的预处理又称属性值的规范化


属性值具有多种类型,包括效益型、成本型和区间型等。这三种属性,效益型属性越大越好,成本型属性越小越好,区间型属性是在某个区间最佳。


判断每个属性的数据是越大越好还是越小越好,当属性为区间型的时候判断在哪个区间最佳。

判断完成以后将它们进行规范化处理。


数据规范化处理的作用


1.属性值有多种类型,上述三种属性放在同一个表中不便于直接从数值大小判断方案的优劣,因此需要对数据进行预处理,使得表中任一属性下性能越优的方案变换后的属性值越大。


2.非量纲化,多属性决策与评估的困难之一是属性间的不可公度性,即在属性值表中的每一列数具有不同的单位(量纲)。即使对同一属性,采用不同的计量单位,表中的数值也就不同。在用各种多属性决策方法进行分析评价时,需要排除量纲的选用对决策或评估结果的影响,这就是非量纲化。


3.归一化,属性值表中不同指标的属性值的数值人小差别很大,为了直观,更为了便于采用各种多属性决策与评估方法进行评价,需要把属性值表中的数值归一化,即把表中数值均变换到[0,1]区间上。


即将上述三种属性全部转化为效益型,这个数值分布在[0,1]区间上,该值越大越好。


属性值线性规划归一化

为了使每个属性变换后的最优值为1且最差值为0,可以进行标准0-1变换。

**1.对效益型属性xj,令



当aij为最小值时,bij为0,当aij为最大值时,bij为1。**


2.对成本型属性xj,

计算公式可套用效益型的公式,在求正负理想解的时候记得要颠倒一下。


3aeac570c9b29022e0a0e1f545e5369.png


例如例题中的生师比,它最好的区间应为[5,6],最差应不低于2,高于12,当该属性值在最有区间时为1,当超过或等于能容忍上下限时为0。**


MATLAB代码(建议对照上方 “TOPSIS法的算法步骤” 查看)

注:以下并非C语言

63d82bacd1cfa1c63f92b72af942ce4.png


注:如果 (x>=qujian(1)&x<=qujian(2)) 成立,结果为真,值为1;如果 x 的值没有出现在上述区间,结果为假,值为0。


加权处理

c3fe34f13ca5c25ee0fa0a1e0e6ae9c.png


实现该式:


2a38b16f958b72c68c830ce33ccfa8c.png

至此步骤2完成,得出加权的向量规范化属性矩阵


正负理想解

58873c56aec876610cc7ed7e1af490c.png



按顺序依次实现

求到正理想解的距离:


求到负理想解的距离:

37c48e496dcd340bc416551f2a2f25d.png


计算各方案的综合评价指数:


得出结果

各方案的从优到劣的次序为4,3,2,1,5


完整代码

d010125777b38630b693b98151cbea1.png

c43059332005c511aaeaa97e74ee2c7.png

相关文章
|
13天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
7天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
7天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
13天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
16天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
15天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
31 8
|
16天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
15天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。