基于遗传算法和粒子群算法的潮流计算比较(Matlab代码实现)

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 基于遗传算法和粒子群算法的潮流计算比较(Matlab代码实现)

1 概述

电力系统潮流是指系统中的所有运行参数总体,其中包括各个发电机与负荷的功率及其电流、各母线电压的大小与相位、各个线路与变压器等元件所通过的电流、功率及其损耗。

潮流计算是根据已知的电网结构和运行条件来确定系统运行形态的分析系统稳态运行的计算。它是电气工程长期研究的重要课题。


本文讲解基于遗传算法和粒子群算法的潮流计算比较(Matlab代码实现)


2 粒子群算法

受Reynols和 Heppner的模型的启发,1995年,电子工程学博士 Russell Eherhart和社会心理学博士James Kennedy提出了粒子群算法[3-4]粒子群算法模拟小鸟在觅食的过程中通过共享信息找到食物位置的行为来解决问题.在此算法中将小鸟食物的位置对应成问题空间解的位置,小鸟对应成无质量无体积的“粒子”,小鸟在觅食过程中的信息共享和相互协作对应成粒子间的信息共享和相互协作﹐在信息共享的同时粒子调整运动方向和速度,从而快速搜寻到最优解.    

                                        图1 粒子群算法流程图

3 遗传算法


遗传算法具有很多优点:(1)可全局搜索,不易陷入局部最优解;(2)编码多样化,很多问题都可以用遗传算法解决;(3)可并行随机搜索﹐且搜索范围逐渐缩小; (4)适应度的函数很灵活,可离散可连续,求导微分方面也不限制;(5)很复杂的问题也能使用遗传算法,且结果可靠;(6)兼容性、可扩展性强,可以和很多其他算法融合使用.随着科技的进步,以及对各算法研究的深入,很多算法研究到一定程度缺陷也越明显,要想规避某算法的缺陷,与其他算法融合使用形成新的算法是很好的方法,而遗传算法就是一个比较好的合作算法.


4 潮流计算运行结果

部分代码:

%% 基于遗传算法和粒子群算法的潮流计算比较(Matlab代码实现)
clc;
clear;
close all;
%% 随机数种子
rng('default')
rng(1)
%%
addpath(genpath('matpower7.0'))
%%
data.mpc=case9;
data.numBranch=length(data.mpc.branch(:,1));
data.distance=xlsread('线型.xlsx',2);
data.Line=xlsread('线型.xlsx',1);
data.numLine=length(data.Line(:,1));
data.base=100;
data.lamdaLoss=25; %损耗成本系数
%% 算法参数设置
dim=data.numBranch;
%%
lb=zeros(1,dim);
ub=ones(1,dim);
fobj=@aimFcn_1;
option.lb=lb; %下限
option.ub=ub; %上限
option.dim=dim;%决策变量个数
if length(option.lb)==1 %判断是否成立,如果成立就往下进行
    option.lb=ones(1,option.dim)*option.lb; %统一长度,每个决策变量对应一个lb和ub
    option.ub=ones(1,option.dim)*option.ub; %统一长度,每个决策变量对应一个lb和ub
end
option.fobj=fobj;
option.showIter=0;
%% 算法参数设置
% 基本参数
option.numAgent=20;        %初始解个体数 越大越好
option.maxIteration=20;    %最大迭代次数 越大越好
option.popSize=option.numAgent;
option.lenTS=option.numAgent*5;  %禁忌长度
% 遗传算法
option.p1_GA=0.85;
option.p2_GA=0.1;
% 粒子群算法
option.w_pso=0.1;
option.c1_pso=1;
option.c2_pso=1;
str_legend=[{'GA'},{'PSO'}];
%% 初始化种群个体
x=ones(option.numAgent,option.dim);
y=ones(option.numAgent,1);
for i=1:option.numAgent
    x(i,:)=option.lb+rand(1,option.dim).*(option.ub-option.lb);
    [y(i),~,x(i,:)]=option.fobj(x(i,:),option,data);
end
% 使用算法求解
rng(1)
[bestY(1,:),bestX(1,:),recording(1)]=GA(x,y,option,data);
rng(1)
[bestY(2,:),bestX(2,:),recording(2)]=PSO(x,y,option,data);
%%
figure
hold on
for i=1:length(recording)
    plot((recording(i).bestFit),'LineWidth',2)
end
xlabel('迭代次数')
ylabel('适应度值')
legend(str_legend)
title('适应度函数曲线')
%% 输出结果
str='GA算法优化结果'
[~,result1]=option.fobj(bestX(1,:),option,data);
str='PSO算法优化结果'
[~,result2]=option.fobj(bestX(2,:),option,data);
str='随机方案'
[~,result5]=option.fobj(bestX(2,:)*0+1,option,data);


5 参考文献

部分理论文献来源于网络文献,如有侵权请联系删除。


[1]刘建华.粒子群算法的基本理论及其改进研究[D].长沙:中南大学,2009.


[2]孙如祥.粒子群与遗传算法的混合研究[D].南 宁:广西大学,2014.


[3]庞飞龙.基于遗传算法的模糊控制送丝系统[D].北京:中国地质大学,2015.


6 Matlab代码实现

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
104 80
|
21天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
基于粒子滤波器的电池剩余使用寿命计算matlab仿真
本研究基于粒子滤波器预测电池剩余使用寿命(RUL),采用MATLAB2022a实现。通过非线性动力学模型模拟电池老化过程,利用粒子滤波器处理非线性和非高斯问题,准确估计电池SOH变化趋势,进而预测RUL。系统仿真结果显示了良好的预测性能。
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
7天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
24天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。