基于Kaggle训练集预测的多层人工神经网络的能源消耗的时间序列预测研究(Matlab代码实现)

简介: 基于Kaggle训练集预测的多层人工神经网络的能源消耗的时间序列预测研究(Matlab代码实现)

💥1 概述

本文为能源消耗的时间序列预测,在Matlab中实现。该预测采用多层人工神经网络,基于Kaggle训练集预测未来能源消耗。


对于基于Kaggle训练集预测能源消耗的时间序列预测,从以下研究:


1. 数据探索与可视化:首先,探索和分析你的训练集数据。了解数据的特征、分布和关系,并使用适当的可视化技术来揭示其中的模式和趋势。


2. 数据预处理:对数据进行预处理,以便于模型的训练和预测。这可能包括处理缺失值、异常值,进行数据平稳化、归一化等。


3. 特征工程:根据你对能源消耗的领域知识,构造和选择适当的特征。这可能包括添加时间相关特征、滞后特征、滑动窗口特征等。


4. 模型选择与建立:考虑使用多层人工神经网络或其他适合时间序列预测的模型,如长短期记忆网络 (LSTM)、卷积神经网络 (CNN) 或采用注意力机制的模型等。选择合适的模型架构,并进行模型训练和调优。


5. 模型评估:使用合适的评估指标来评估模型的性能,如均方根误差 (RMSE)、平均绝对误差 (MAE)、平均绝对百分比误差 (MAPE) 等。还可以考虑使用交叉验证等技术来评估模型的稳定性和泛化能力。


6. 参数调优:通过调整模型的超参数,如学习率、批次大小、层数、神经元数量等,以提高模型的性能。


7. 模型解释与可解释性:对于能源消耗的时间序列预测,可解释性可能是一个重要的因素。探索和解释模型如何作出预测,并提供合理的解释和可视化可帮助理解模型与能源消耗之间的关系。


8. 模型部署与应用:将训练和调优的模型应用于实际测试集,并进行预测与验证,以评估模型的实际性能和准确性。可以考虑将模型部署为一个实时或批处理的预测系统,用于实际的能源消耗预测。


以上步骤可以作为一个基本研究流程的指导。根据你的具体情况和实际需求,你可能需要进行进一步的细化和调整。此外,参考相关领域的文献和其他相关工作也是非常有帮助的。


📚2 运行结果

部分代码:

%% Exercise 2 - Recurrent Neural Networks
%% Initial stuff
clc
clearvars
close all
%% 1 - Hopfield Network
% Note: for this exercise, it will be interesting to check what happens if
% you add more neurons, i.e. modify T such as N is bigger.
T = [1 1; -1 -1; 1 -1]';                                                    % N x Q matrix containing Q vectors with components equal to +- 1.
                                                                            % 2-neuron network with 3 atactors
net = newhop(T);                                                            % Create a recurrent HOpfield network with stable points being the vectors from T
A1 = [0.3 0.6; -0.1 0.8; -1 0.5]';                                          % Example inputs
A2 = [-1 0.5 ; -0.5 0.1 ; -1 -1 ]';
A3 = [1 0.5  ; -0.3 -0.4 ; 0.8 -0.6]';
A4 = [0 -0.1 ; 0.1 0 ; -0.5 0.1]';
A5 = [0 0 ; 0 0.1  ; -0.1 0 ]';
A0 = [1 1; -1 -1; 1 -1]';
% Simulate a Hopfield network
% Y_1 = net([],[],Ai);                                                      % Single step iteration    
num_step = 20;                                                              % Number of steps                
Y_1 = net({num_step},{},A1);                                                % Multiple step iteration
Y_2 = net({num_step},{},A2);  
Y_3 = net({num_step},{},A3);  
Y_4 = net({num_step},{},A4);  
Y_5 = net({num_step},{},A5);
%% Now we try with 4 Neurons
T_ = [1 1 1 1; -1 -1 1 -1; 1 -1 1 1]';                                      % N x Q matrix containing Q vectors with components equal to +- 1.
                                                                            % 4-neuron network with 3 atactors
net_ = newhop(T_);                                                          % Create a recurrent HOpfield network with stable points being the vectors from T
A1_ = [0.3 0.6 0.3 0.6; -0.1 0.8 -0.1 0.8; -1 0.5 -1 0.5]';                 % Example inputs
A2_ = [-1 0.2 -1 0.2 ; -0.5 0.1  -0.5 0.1 ; -1 -1 -1 -1 ]';
A3_ = [1 0.5 1 0.5 ; -0.3 -0.4 -0.3 -0.4 ; 0.8 -0.6 0.8 -0.6]';
A4_ = [-0.5 -0.3 -0.5 -0.3 ; 0.1 0.8 0.1 0.8 ; -0.7 0.6 -0.7 0.6]';
% Simulate a Hopfield network
% Y_1 = net([],[],Ai);                                                      % Single step iteration    
num_step_ = 40;                                                             % Number of steps                
Y_1_ = net_({num_step_},{},A1_);                                            % Multiple step iteration
Y_2_ = net_({num_step_},{},A2_);  
Y_3_ = net_({num_step_},{},A3_);  
Y_4_ = net_({num_step_},{},A4_); 
%% Execute rep2.m || A script which generates n random initial points and visualises results of simulation of a 2d Hopfield network 'net'
% Note: The idea is to understand what is the relation between symmetry and
% attractors. It does not make sense that appears a fourth attractor when
% only 3 are in the Target T
close all 


🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]程静,郑定成,吴继权.基于时间序列ARMA模型的广东省能源需求预测[J].能源工程,2010(01):1-5.DOI:10.16189/j.cnki.nygc.2010.01.012.


相关文章
|
17天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
13天前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
215 1
|
14天前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
|
17天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
107 0
|
2月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
|
28天前
|
机器学习/深度学习 传感器 算法
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
152 7
|
25天前
|
机器学习/深度学习 传感器 分布式计算
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
|
25天前
|
机器学习/深度学习 移动开发 编解码
基于人工神经网络的类噪声环境声音声学识别(Matlab代码实现)
基于人工神经网络的类噪声环境声音声学识别(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 数据可视化
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题研究(Matlab代码实现)
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题研究(Matlab代码实现)
131 6
|
1月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)

热门文章

最新文章