计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)2

简介: 计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)2

2.3.2天然气管道流量方程线性化

为了降低天然气子系统模型的求解难度,同时也降低电力子系统和天然气子系统耦合的复杂度,本节通过分段线性化的方法对非线性的天然气管道流量方程进行线性化处理,进而将现有天然气子系统模型转化为混合整数线性规划模型。


 


上述分段线性化过程是在直角坐标系的第一象限内进行的,在管道中天然气流向可定的前提下,上述分析方法适用于任何节点的天然气系统。而在某些天然气系统中,如比利时20节点天然气系统,当管道中天然气正负流向不能确定时,该分段线性化方法将不再适用。因此,为了得到适用性更高的分段线性函数,将上述分段线性化过程改为在第一、三象限内进行,即将线性分段数N=100平均在第一和第三象限内各取50段,其他分析过程相同,以保证管道中的天然气在正负流向时均适用。改进的分段线性化示意图如图2-4所示。


2.3.3 天然气管道模型

第⒉部分建立的电气综合能源系统协同优化模型为混合整数非线性规划(MINLP)问题﹐其具

有NP-hard的特性。求解MINLP问题的难点主要为:


①难以判断得到的解为全局最优解﹔2决策变量包括整数变量与连续变量;3问题的非线性。求

解MINLP问题的算法有:智能算法、互补法、分支定界算法、Benders分解算法﹑模型转化算法[22]等。模型转化算法的一种思路是将MINLP问题通过线性化处理转化为混合整数二阶锥规划问题或二阶锥线性规划问题,再调用成熟的商业求解器对问题进行求解。该算法相比其他算法具有能在解决离散变量的同时,在较短时间内实现求取全局最优解的优势。因此,本文采用分段线性化以及二阶锥松弛对模型的非线性部分进行线性化处理。


模型含有六部分非线性项,分别为管道气流Weymouth 等式,CCHP三个非线性约束,以及电网潮流的两个非线性约束。


由于天然气流量方程是非线性的,因此要对其进行线性化处理。对方程进行变形之后进行分段线性化。

           


分段m=50(管道流量方向的前提下);如果不知道流量的 m=100,在一、三象限各50。

(文献cajP18-P19也有weymouth方程的分段线性化处理,方法一样。)

2.4 热力子系统模型

热力子系统主要由热源、热网和热负荷组成,其结构示意图如图2-5所示。其中,热网是由拓扑结构完全相同的供水网络和回水网络组成的,通过热媒(热水或热汽,本章中设定热媒为热水)在管网中的流动,热网将热源产生的热量传送到各个热负荷。图2-5中,1表示热源,2表示热负荷,实线表示供水系统,虚线表示回水系统。下面对热力子系统的各个组成部分进行详细建模。

2.4.1 热源模型

常见的热源包括热电联产机组(combined heat and power,CHP)、电锅炉(electric boiler,EB)等。

 

(1)CHP机组模型


 



CHP机组的效率以及容量与爬坡限制如下图所示(来自其他文献,只用效率即可):

  0.35  50 0 1.5

为CHP机组输出的电功率。CHP机组余热锅炉产生的热功率

 = 2.58(2.58是个经验数值)


天然气低热值为9.7kwh/m3;Cng是天然气价格单位:美元/m3,天然气燃料费用如下:

燃气轮机的天然气消耗量:


(2)电锅炉模型(EB)

本文效率取0.85 。

2.4.2 热网模型


                                         

2.4.3 热负荷模型

2.4.4 复杂的管道流量损失转化

     

第三部分 计及碳排放成本的综合能源系统最优多能流求解


3.1 引言

3.2 综合能源系统耦合元件建模

电力子系统和天然气子系统通过燃气发电机相互耦合,燃气发电机具有爬坡快、启停灵活等特点。与常规燃煤发电机组不同,燃气发电机消耗天然气,发出电功率。在电力子系统中,燃气发电机作为电源出现,在天然气子系统中则作为负荷出现。一般情况下,燃气发电机发出的电功率仅考虑有功功率,而与无功功率无关。燃气发电机消耗的天然气与发出的有功功率有如下关系:

                               

式中,Hg表示燃气发电机消耗的天然气量; ag表示燃气发电机的转化系数;Pgas表示燃气发电机发出的有功功率。

 

典型CHP机组的燃烧涡轮机通过燃烧天然气、石油或沼气发电,并使用热回收装置从涡轮机中捕获热量。为了加强电力、天然气和热力之间的耦合效果,本章算例中将热力子系统中的CHP机组设为燃气CHP机组,将电、气、热三种能源通过燃气 CHP机组进行耦合。与燃气发电机组相同,燃气CHP机组消耗天然气,发出有功功率,两者间的转化关系与也为


3.3 电-气-热综合能源最优多能流模型

为了实现综合能源系统的低碳经济运行,本节构建了计及碳排放成本的综合能源系统多时段最优多能流线性求解模型,该模型以最小化综合能源系统总运行成本和碳排放成本为目标函数,其总运行成本包括燃煤发电机组、燃气发电机组、CHP机组的运行成本和天然气源的出力成本。同时,由于不同的发电机组消耗的燃料不同,发出每单位电功率排放的二氧化碳量也是不同的。本节使用碳排放系数来计算不同发电机组的碳排放量,并通过碳税(carbon tax)计算综合能源系统碳排放成本。


3.3.1 目标函数

                 


3.3.2 约束条件

本节建立的综合能源系统最优多能流优化调度模型除需要满足第2章中提到的电力子系统、天然气子系统和热力子系统的基本等式约束和不等式约束条件之外,同时还需要满足耦合环节约束条件。此外,还需要满足电、气、热能量平衡约束。


3.3.3 求解方法

本文第2章中对天然气管道流量方程进行了线性化处理,将综合能源系统模型转化为混合整数线性规划模型。针对本章构建的综合能源系统优化模型,选用分支定界法进行求解,并通过GAMS软件调用Cplex求解器对本章所构建的模型进行统一求解。


3.4 算例分析

3.4.1 PJM-5节点电力系统-7节点天然气系统-6节点热力系统算例

本节对 PJM-5节点电力系统、7节点天然气系统和6节点热力系统耦合而成的综合能源系统进行研究。耦合而成的电-气-热综合能源系统示意图如图3-1所示。


在该算例中,将PJM-5节点电力系统中的1节点的两台发电机均设为燃气发电机,所消耗的天然气分别由7节点天然气系统的节点1和节点3提供;5节点处的发电机设置为CHP机组,该CHP机组同时作为热源连接在6节点热力系统的节点1处。7节点天然气系统包含2个气源和3个天然气负荷。热力系统中的热源包括两台CHP机组和一台电锅炉,电锅炉所消耗的电功率由CHP机组提供。将两台CHP机组均设为燃气机组,所消耗的天然气由天然气系统的节点2提供。电力子系统、天然气子系统和热力子系统的详细网络参数见附录A,其中热力子系统的参数参照文献[37]。


3.4.2 IEEE-39节点电力系统-比利时20节点天然气系统-6节点热力系统算例

由P.JM-5节点电力系统、7节点天然气系统和6节点热力系统耦合而成的综合能源系统已经证明了所提模型在降低碳排放和降低总成本上的准确性和有效性。本节继续对由IEEE-39节点电力系统、比利时20节点天然气系统和6节点热力系统耦合而成的综合能源系统进行研究,耦合而成的电-气-热综合能源系统示意图如图3-5所示。


该算例将IEEE-39节点电力系统中的33、37节点的两台发电机均设为燃气发电机,所消耗的天然气分别由比利时20节点天然气系统的节点6和节点19提供;30 节点处的发电机设置为CHP机组,该CHP机组同时作为热源连接在6节点热力系统的节点1处。比利时20节点天然气系统包含6个气源和9个天然气负荷。6节点热力系统中的热源包括一台CHP机组和一台电锅炉,电锅炉所消耗的电功率由CHP机组提供。为了增加电、气、热之间的耦合强度,将CHP机组设为燃气机组,所消耗的天然气由天然气系统的节点3提供。IEEE-39节点电力子系统数据取自MATPOWER工具包中的标准数据,天然气子系统详细网络参数见附录B,热力子系统数据与上一节相同。


(1)电力数据

(二阶锥模型,数据与matpower39节点相同,其中2台发电机改成燃气发电机)

总共10台发电机组,总装机容量6967MW,总电力负荷5941.5MW。



电网节点33

燃气轮机

气网节点6供气

电网节点37

燃气轮机

气网节点19供气

电网节点30

CHP机组

气网节点3供气

是热网节点1的热源

其余7个电源节点

燃煤机组


IEEE-39节点电力系统包含10台发电机组,总装机容量为6967MW,总电力负荷为5941.5MW。燃煤机组和燃气机组的发电成本系数如表3-5所示。

比利时20节点天然气子系统中包含有6个气源,9个燃气负荷。其中,包括7个常规燃气负荷和2个燃机发电机负荷,总负荷为2.4608。天然气子系统中气源的出力成本分别设置为0.085 (#1-3气源)和0.062 (1#4-6气源)。


(2)天然气子系统气源基本参数如表3-6所示。

热力子系统中包含有1台CHP机组、1台电锅炉和3个热负荷,总负荷为50MW。其中,电锅炉的电热比系数取为0.8,其热出力上限设为30MW。CHP机组的基本参数如表3-7所示。

(3)附录B比利时20节点天然气系统数据



运行结果图:

第五部分 Matlab代码、数据、文章讲解

相关文章
|
2天前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
98 65
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
2月前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
55 8
|
3月前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
3月前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
92 3
|
4月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
4月前
|
算法 5G 数据安全/隐私保护
MIMO系统中差分空间调制解调matlab误码率仿真
本项目展示了一种基于Matlab 2022a的差分空间调制(Differential Space Modulation, DMS)算法。DMS是一种应用于MIMO通信系统的信号传输技术,通过空间域的不同天线传输符号序列,并利用差分编码进行解调。项目包括算法运行效果图预览、核心代码及详细中文注释、理论概述等内容。在发送端,每次仅激活一个天线发送符号;在接收端,通过差分解调估计符号和天线选择。DMS在快速衰落信道中表现出色,尤其适用于高速移动和卫星通信系统。
|
4月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
4月前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
4月前
|
Python
基于python-django的matlab护照识别网站系统
基于python-django的matlab护照识别网站系统
30 0