基于matlab的瑞利信道模拟和仿真

简介: 基于matlab的瑞利信道模拟和仿真

1.算法描述

   瑞利分布是一个均值为0,方差为σ²的平稳窄带高斯过程,其包络的一维分布是瑞利分布。其表达式及概率密度如图所示。瑞利分布是最常见的用于描述平坦衰落信号接收包络或独立多径分量接受包络统计时变特性的一种分布类型。两个正交高斯噪声信号之和的包络服从瑞利分布。
   瑞利衰落能有效描述存在能够大量散射无线电信号的障碍物的无线传播环境。若传播环境中存在足够多的散射,则冲激信号到达接收机后表现为大量统计独立的随机变量的叠加,根据中心极限定理,则这一无线信道的冲激响应将是一个高斯过程。如果这一散射信道中不存在主要的信号分量,通常这一条件是指不存在直射信号(LoS),则这一过程的均值为0,且相位服从0 到2π的均匀分布。即,信道响应的能量或包络服从瑞利分布。若信道中存在一主要分量,例如直射信号(LoS),则信道响应的包络服从莱斯分布,对应的信道模型为莱斯衰落信道。通常将信道增益以等效基带信号表示,即用一复数表示信道的幅度和相位特性。由此瑞利衰落即可由这一复数表示,它的实部和虚部服从于零均值的独立同分布高斯过程。 

   瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。这一信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。瑞利衰落只适用于从发射机到接收机不存在直射信号(LoS,Line of Sight)的情况,否则应使用莱斯衰落信道作为信道模型。     

   瑞利衰落(Rayleigh Fading):在无线通信信道中,由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。

  由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布。

   当信道中不存在一个较强的直达径时,其信号包络服从是瑞利分布。在移动无线信道中,Rayleigh分布是常见的用于描述平坦衰落信号或独立多径分量接收包络统计时变特性的一种分布类型。众所周知,两个正交的噪声信号之和的包络服从Rayleigh分布。Rayleigh分布的概率密度函数(pdf)为:

89bca8f9b5f7d98f21a06a08145756f9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

信道模型框图如图2所示:

7d430d6077725f25a0f2a7ec2b665243_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.仿真效果预览
matlab2022a仿真结果如下:

e1c42f14b5b8b150470ca7161937adbb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b7b1761875aa3bf894ad4797c327978c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
653b0a5be81fd307fe822f1f80e71602_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

fm=512; %最大多普勒频移
fc=5120; %载波频率
t=1:LengthOfSignal;
% SignalInput=sin(t/100);
SignalInput=sin(t/100)+cos(t/65); %信号输入
 
delay=[0 31 71 109 173 251];
power=[0 -1 -9 -10 -15 -20]; %dB
y_in=[zeros(1,delay(6)) SignalInput]; %为时移补零
y_out=zeros(1,LengthOfSignal); %用于信号输出
for i=1:6
    Rayl;
    y_out=y_out+r.*y_in(delay(6)+1-delay(i):delay(6)+LengthOfSignal-delay(i))*10^(power(i)/20);
end;
 
figure(1);
subplot(2,1,1);
plot(SignalInput(delay(6)+1:LengthOfSignal)); %去除时延造成的空白信号
title('Signal Input');
subplot(2,1,2);
plot(y_out(delay(6)+1:LengthOfSignal)); %去除时延造成的空白信号
title('Signal Output');
figure(2);
subplot(2,1,1);
hist(r,256);
title('Amplitude Distribution Of Rayleigh Signal')
subplot(2,1,2);
hist(angle(r0));
title('Angle Distribution Of Rayleigh Signal');
figure(3);
plot(Sf1);
title('The Frequency Response of Doppler Filter');
相关文章
|
15天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
16天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
14天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
15天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
16天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
202 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章