基于MATLAB中雷达和视觉合成数据的目标级传感器融合(Matlab)代码实现

简介: 基于MATLAB中雷达和视觉合成数据的目标级传感器融合(Matlab)代码实现

💥1 概述

本文使用MATLAB的场景生成器工具箱,通过合成雷达和视觉观察创建一个简单的高速公路驾驶场景。扩展卡尔曼滤波器已被实现以将车辆的状态传播到未来。将投影状态值与当前测量值进行比较以执行跟踪。

📚2 运行结果

 

🎉3 参考文献

[1]尹晓东,刘后铭.改进的多目标多传感器数据融合相关算法[J].地质科技管理,1994(03):225-231.

👨‍💻4 Matlab代码

主函数部分代码:

clear all
close all
clc
%% Parameters
% Assignment gate value
AssignmentThreshold = 30;        % The higher the Gate value, the higher the likelihood that every track...
                                 % will be assigned a detection.
% M/N initiation parameters
% The track is "confirmed" if after N consecutive updates at
% least M measurements are assigned to the track after the track initiation.
N = 5;
M = 4;
% Elimination threshold: The track will be deleted after EliminationTH # of updates without 
% any measurement update
EliminationTH = 10; % updates
% Measurement Noise
R = [22.1 0 0 0
     0 2209 0 0
     0 0 22.1 0
     0 0 0 2209];
% Process noise
Q= 7e-1.*eye(4);
% Performance anlysis parameters:
XScene = 80;
YScene = 40;
% PerfRadius is defined after scenario generation
%% Generate the Scenario
% Define an empty scenario.
scenario = drivingScenario;
scenario.SampleTime = 0.01;  % seconds
SensorsSampleRate   = 0.1;  % seconds
EgoSpeed = 25; % m/s
%% Simple Scenario (Choice #1)
% Load scenario road and extract waypoints for each lane
Scenario = load('SimpleScenario.mat');
WPs{1} = Scenario.data.ActorSpecifications(2).Waypoints;
WPs{2} = Scenario.data.ActorSpecifications(1).Waypoints;
WPs{3} = Scenario.data.ActorSpecifications(3).Waypoints;
road(scenario, WPs{2}, 'lanes',lanespec(3));
% Ego vehicle (lane 2)
egoCar = vehicle(scenario, 'ClassID', 1);
egoWPs = circshift(WPs{2},-8);
path(egoCar, egoWPs, EgoSpeed);
% Car1 (passing car in lane 3)
Car1 = vehicle(scenario, 'ClassID', 1);
Car1WPs = circshift(WPs{1},0);
path(Car1, Car1WPs, EgoSpeed + 5);
% Car2 (car in lane 1)
Car2 = vehicle(scenario, 'ClassID', 1);
Car2WPs = circshift(WPs{3},-15);
path(Car2, Car2WPs, EgoSpeed -5);
% Ego follower (lane 2)
Car3 = vehicle(scenario, 'ClassID', 1);
Car3WPs = circshift(WPs{2},+5);
path(Car3, Car3WPs, EgoSpeed);
% Car4 (stopped car in lane 1)
Car4 = vehicle(scenario, 'ClassID', 1);
Car4WPs = circshift(WPs{3},-13);
path(Car4, Car4WPs, 1);
ActorRadius = norm([Car1.Length,Car1.Width]);
%---------------------------------------------------------------------------------------------
%% Waypoint generation (Choice #2)
% % Load scenario road and extract waypoints for each lane
% WPs = GetLanesWPs('Scenario3.mat');
% % Define road wtr the middle lane waypoints
% road(scenario, WPs{2}, 'lanes',lanespec(3));
% %%%%%%%%%%%% BE CAREFUL OF LANESPACE(3) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Ego vehicle (lane 2)
% egoCar = vehicle(scenario, 'ClassID', 1);
% path(egoCar, WPs{2}, EgoSpeed); % On right lane
% 
% % Car1 (passing car in lane 3)
% Car1 = vehicle(scenario, 'ClassID', 1);
% WPs{1} = circshift(WPs{1},20);
% path(Car1, WPs{1}, EgoSpeed + 2);
% 
% % Car2 (slower car in lane 1)
% Car2 = vehicle(scenario, 'ClassID', 1);
% WPs{3} = circshift(WPs{3},-50);
% path(Car2, WPs{3}, EgoSpeed -5);
%---------------------------------------------------------------------------------------------
%% Create a Tracker
% Create a |<matlab:doc('multiObjectTracker') multiObjectTracker>| to track
% the vehicles that are close to the ego vehicle. The tracker uses the
% |initSimDemoFilter| supporting function to initialize a constant velocity
% linear Kalman filter that works with position and velocity.
% 
% Tracking is done in 2-D. Although the sensors return measurements in 3-D,
% the motion itself is confined to the horizontal plane, so there is no
% need to track the height.
tracker = multiObjectTracker('FilterInitializationFcn', @initSimDemoFilter, ...
    'AssignmentThreshold', 30, 'ConfirmationParameters', [4 5]);
positionSelector = [1 0 0 0; 0 0 1 0]; % Position selector
velocitySelector = [0 1 0 0; 0 0 0 1]; % Velocity selector
%% Define Sensors and Bird's Eye Plot
sensors = SensorsConfig(egoCar,SensorsSampleRate);
BEP = createDemoDisplay(egoCar, sensors);
BEP1 = createDemoDisplay(egoCar, sensors);
%% Fusion Loop for the scenario
Tracks = [];
count = 0;
toSnap = true;
TrackerStep = 0;
time0 = 0;
currentStep = 0;
Performance.Actors.Ground  = [];
Performance.Actors.EATracks = [];
Performance.Actors.MATracks = [];
Performance.MeanDistance.EA = [];
Performance.MeanDistance.MA = [];
Performance.GhostActors.EA = [];
Performance.GhostActors.MA = [];
while advance(scenario) %&& ishghandle(BEP.Parent)    
    currentStep = currentStep + 1;
    % Get the scenario time
    time = scenario.SimulationTime;
    % Get the position of the other vehicle in ego vehicle coordinates
    ta = targetPoses(egoCar);
    % Simulate the sensors
    detections = {};
    isValidTime = false(1,length(sensors));
    for i = 1:length(sensors)
        [sensorDets,numValidDets,isValidTime(i)] = sensors{i}(ta, time);
        if numValidDets
            for j = 1:numValidDets
                % Vision detections do not report SNR. The tracker requires
                % that they have the same object attributes as the radar
                % detections. This adds the SNR object attribute to vision
                % detections and sets it to a NaN.
                if ~isfield(sensorDets{j}.ObjectAttributes{1}, 'SNR')
                    sensorDets{j}.ObjectAttributes{1}.SNR = NaN;
                end
            end
            detections = [detections; sensorDets]; %#ok<AGROW>
        end
    end
    % Update the tracker if there are new detections
    if any(isValidTime)
        TrackerStep = TrackerStep + 1;
%----------------------------------------------------------------------------------------------
%-----------------------------------MATLAB Tracker----------------------------------------------
%----------------------------------------------------------------------------------------------
        vehicleLength = sensors{1}.ActorProfiles.Length;
        detectionClusters = clusterDetections(detections, vehicleLength);
        confirmedTracks1 = updateTracks(tracker, detectionClusters, time);
%----------------------------------------------------------------------------------------------
%-----------------------------------Eatron Tracker----------------------------------------------
%----------------------------------------------------------------------------------------------
        %% Cluster Detections
        VehicleDim = [sensors{1}.ActorProfiles.Length, sensors{1}.ActorProfiles.Width,...
                      sensors{1}.ActorProfiles.Height];
        [DetectionClusters] = ClusterDetections(detections, VehicleDim);
目录
打赏
0
0
0
0
78
分享
相关文章
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
基于GWO灰狼优化的多目标优化算法matlab仿真
本程序基于灰狼优化(GWO)算法实现多目标优化,适用于2个目标函数的MATLAB仿真。使用MATLAB2022A版本运行,迭代1000次后无水印输出结果。GWO通过模拟灰狼的社会层级和狩猎行为,有效搜索解空间,找到帕累托最优解集。核心步骤包括初始化狼群、更新领导者位置及适应值计算,确保高效探索多目标优化问题。该方法适用于工程、经济等领域复杂决策问题。
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
301 13
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
310 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
189 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
226 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
177 10
基于布谷鸟搜索的多目标优化matlab仿真
该程序运用布谷鸟搜索算法进行多目标优化,设置三个目标函数,生成三维优化曲面和收敛曲线。在MATLAB2022a中运行,显示了迭代过程中的优化结果图。算法基于布谷鸟的寄生繁殖和列维飞行行为,通过非支配排序和拥挤度计算处理多目标问题。迭代中,新解不断被评估、更新并加入帕累托前沿,最终输出帕累托前沿作为最优解集。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等