基于布谷鸟搜索的多目标优化matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
大数据开发治理平台 DataWorks,不限时长
简介: 该程序运用布谷鸟搜索算法进行多目标优化,设置三个目标函数,生成三维优化曲面和收敛曲线。在MATLAB2022a中运行,显示了迭代过程中的优化结果图。算法基于布谷鸟的寄生繁殖和列维飞行行为,通过非支配排序和拥挤度计算处理多目标问题。迭代中,新解不断被评估、更新并加入帕累托前沿,最终输出帕累托前沿作为最优解集。

1.程序功能描述
基于布谷鸟搜索的多目标优化,设置三个目标函数,进行多目标优化,输出三维优化曲面以及收敛曲线。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

7f8b7dcfe9431b1a3ee13910383fac33_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
a8711102455cd51351429606a4e94d39_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

```X0 = func_obj(X0);
%基于非支配排序对它们进行排名
X0 = func_sort(X0,1);
%基于拥挤度计算领先巢穴
[~,XL] = func_Leader(X0);

%开始迭代
for i = 1:Iteration
% 获取新的巢穴值
Xnew = func_cuckoo(X0,XL,Vmin,Vmax);
% 考虑找到巢穴的可能性更新巢穴
Xnew = func_empty(Xnew,Vmin,Vmax,pa);
% 生成目标函数值
Xnew = func_obj(Xnew);
% 非支配排序
Xnew = [X0(:,1:(Nvar+Nobjs));Xnew];
Xnew = func_sort(Xnew,1);
% 基于拥挤度计算领先巢穴
[~,XL] = func_Leader(Xnew);

% 更新巢穴
Xnew = Xnew(1:Nums,:);
X0   = Xnew;
Xnew = [];
if i>30
figure(1);
plot3(X0(:,Nvar + 1),X0(:,Nvar + 2),X0(:,Nvar+3),'r.');
title(['迭代次数:',num2str(i)]);
xlabel('X');
ylabel('Y');
zlabel('Z');
grid on;
end
pause(0.00002);
idx = find(X0(:,end)<10000);


err(i) = mean2(X0(idx,end));

end
figure;
plot(err,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('迭代次数');
ylabel('fitness');
26

```

4.本算法原理
布谷鸟搜索算法(Cuckoo Search Algorithm, CSA)是一种基于布谷鸟寄生繁殖行为和列维飞行行为的优化算法。它最初被设计用于解决连续单目标优化问题,但经过改进和扩展,也可以应用于多目标优化问题。在多目标优化中,目标是找到一个解决方案集,该集合在多个相互冲突的目标之间提供最佳的权衡。

  1. 布谷鸟搜索算法基础

    布谷鸟搜索算法模拟了布谷鸟寄生繁殖行为和列维飞行行为。在算法中,每个解被看作一个布谷鸟蛋,而最优解则对应于最好的寄生巢。布谷鸟通过列维飞行在搜索空间中进行长距离跳跃和短距离搜索,以寻找更好的解。
    
  2. 多目标优化问题
    多目标优化问题可以数学上表示为:
    939653eccdf5a4f388db6a9bbb7ac339_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  1. 基于布谷鸟搜索的多目标优化算法

     将布谷鸟搜索算法扩展到多目标优化问题,需要引入一些额外的策略和机制,如帕累托支配关系、解的存储和选择策略等。
    
    对于两个解 x1 和 x2,如果满足以下条件:
    

39357b4aab66f2545c8a621bfc627ec1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  1. 解的存储和选择策略
    为了存储和选择帕累托最优解,通常使用一个称为帕累托前沿的集合。帕累托前沿包含了在当前搜索过程中找到的所有非支配解。
    

5.算法步骤
基于布谷鸟搜索的多目标优化算法可以概括为以下步骤:

初始化:生成初始布谷鸟群体,并评估其目标函数值。

构建帕累托前沿:从初始群体中选择非支配解,构建初始帕累托前沿。

循环迭代:对于每个迭代步骤,执行以下操作:

生成新解:通过列维飞行和边界检查生成新解。

评估新解:计算新解的目标函数值。

更新帕累托前沿:将新解与当前帕累托前沿进行比较,更新前沿集合。

保留最优解:根据某种策略(如精英策略)保留一部分最优解。

替换部分解:根据某种准则(如劣解替换准则)替换部分解。

终止条件:如果达到最大迭代次数或满足其他终止条件,则停止迭代。

输出结果:输出帕累托前沿作为最终解集。

相关文章
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
11天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
11天前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。
|
3天前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
12天前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
2月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
2月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
2月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章