基于共享储能电站的工业用户日前优化经济调度(Matlab代码实现)

简介: 基于共享储能电站的工业用户日前优化经济调度(Matlab代码实现)

💥1 概述

文献来源:


储能技术广泛应用于调频、调峰、平抑可再生能源出力波动、需求侧响应、提高用户可靠性等领域,对能源互联网的发展起到重要支撑作用。通过储能系统在电网电价谷时段存储电能,在电价峰时段释放电能供给用户,可以为用户节省用电成本,同时缓解电网调峰压力[2,3,4]。国家和地方政府大力推广储能技术的应用,储能的发展前景广阔。


目前关于共享储能的研究处于起步阶段,现有的工作以共享储能系统为主要研究对象,分析共享储能系统的商业模式和盈利情况,没有对用户参与共享储能系统的充放电行为和经济效益做深入研究。

本文在用户群间引入共享储能电站,建立以用户群日运行成本最优为目标的优化调度模型,分析用户群接入共享储能电站后的充放电行为和经济效益,并对共享储能电站的投资回收年限等经济性指标与服务费定价关系做出进一步的研究。


1.1 共享储能电站概念及运营模式

共享储能电站的概念如图 1 所示,储能电站运营商利用资金优势在用户群间建立大型共享储能电站,对储能电站进行统一运营管理,为同一配电网区域内的多个用户提供共享储能服务。

1.2 基于共享储能的优化调度模型

📚2 运行结果

2.1 场景分析

CPXPARAM_Simplex_Display                         2
CPXPARAM_MIP_Tolerances_MIPGap                   9.9999999999999995e-07
CPXPARAM_Barrier_Display                         2
Tried aggregator 3 times.
MIP Presolve eliminated 479 rows and 53 columns.
Aggregator did 159 substitutions.
Reduced MIP has 373 rows, 229 columns, and 1198 nonzeros.
Reduced MIP has 46 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (1.67 ticks)
Found incumbent of value 4919.153611 after 0.03 sec. (2.56 ticks)
Probing fixed 0 vars, tightened 46 bounds.
Probing time = 0.00 sec. (0.05 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 256 rows and 147 columns.
MIP Presolve modified 64 coefficients.
Reduced MIP has 117 rows, 82 columns, and 396 nonzeros.
Reduced MIP has 17 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (0.31 ticks)
Probing time = 0.00 sec. (0.01 ticks)
Tried aggregator 1 time.
Reduced MIP has 117 rows, 82 columns, and 396 nonzeros.
Reduced MIP has 17 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (0.19 ticks)
Probing time = 0.00 sec. (0.01 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.00 sec. (0.29 ticks)
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap
*     0+    0                         2776.7029     2633.8312             5.15%
      0     0        cutoff           2776.7029                     24    0.00%
Root node processing (before b&c):
  Real time             =    0.05 sec. (7.26 ticks)
Parallel b&c, 16 threads:
  Real time             =    0.00 sec. (0.00 ticks)
  Sync time (average)   =    0.00 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.05 sec. (7.26 ticks)
----------用户A部分------------
最优储能容量规划值为 : 2796.5625 kWh
最优储能充放电功率最大值为 : 590 kW
----------用户B部分------------
最优储能容量规划值为 : 739.2434 kWh
最优储能充放电功率最大值为 : 130 kW
----------用户C部分------------
最优储能容量规划值为 : 698.0099 kWh
最优储能充放电功率最大值为 : 80 kW
>> 
CPXPARAM_Simplex_Display                         2
CPXPARAM_MIP_Tolerances_MIPGap                   9.9999999999999995e-07
CPXPARAM_Barrier_Display                         2
Tried aggregator 3 times.
MIP Presolve eliminated 479 rows and 53 columns.
Aggregator did 159 substitutions.
Reduced MIP has 373 rows, 229 columns, and 1198 nonzeros.
Reduced MIP has 46 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (1.67 ticks)
Found incumbent of value 4919.153611 after 0.03 sec. (2.56 ticks)
Probing fixed 0 vars, tightened 46 bounds.
Probing time = 0.00 sec. (0.05 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 256 rows and 147 columns.
MIP Presolve modified 64 coefficients.
Reduced MIP has 117 rows, 82 columns, and 396 nonzeros.
Reduced MIP has 17 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (0.31 ticks)
Probing time = 0.00 sec. (0.01 ticks)
Tried aggregator 1 time.
Reduced MIP has 117 rows, 82 columns, and 396 nonzeros.
Reduced MIP has 17 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (0.19 ticks)
Probing time = 0.00 sec. (0.01 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.00 sec. (0.29 ticks)
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap
*     0+    0                         2776.7029     2633.8312             5.15%
      0     0        cutoff           2776.7029                     24    0.00%
Root node processing (before b&c):
  Real time             =    0.05 sec. (7.26 ticks)
Parallel b&c, 16 threads:
  Real time             =    0.00 sec. (0.00 ticks)
  Sync time (average)   =    0.00 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.05 sec. (7.26 ticks)
----------用户A部分------------
最优储能容量规划值为 : 2796.5625 kWh
最优储能充放电功率最大值为 : 590 kW
----------用户B部分------------
最优储能容量规划值为 : 739.2434 kWh
最优储能充放电功率最大值为 : 130 kW
----------用户C部分------------
最优储能容量规划值为 : 698.0099 kWh
最优储能充放电功率最大值为 : 80 kW
>> 

2.2 接入共享储能电站优化结果分析

Aggregator did 91 substitutions.
Reduced MIP has 259 rows, 277 columns, and 858 nonzeros.
Reduced MIP has 69 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (1.05 ticks)
Probing fixed 9 vars, tightened 111 bounds.
Probing time = 0.00 sec. (0.09 ticks)
Cover probing fixed 1 vars, tightened 28 bounds.
Tried aggregator 2 times.
MIP Presolve eliminated 81 rows and 66 columns.
MIP Presolve modified 132 coefficients.
Aggregator did 6 substitutions.
Reduced MIP has 172 rows, 205 columns, and 568 nonzeros.
Reduced MIP has 59 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (0.42 ticks)
Probing fixed 0 vars, tightened 9 bounds.
Probing time = 0.00 sec. (0.04 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 1 rows and 0 columns.
MIP Presolve modified 9 coefficients.
Reduced MIP has 171 rows, 205 columns, and 565 nonzeros.
Reduced MIP has 59 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (0.33 ticks)
Probing time = 0.00 sec. (0.04 ticks)
Clique table members: 7.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.00 sec. (0.43 ticks)
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap
*     0     0      integral     0     2202.4575     2202.4575       20    0.00%
Elapsed time = 0.02 sec. (4.91 ticks, tree = 0.00 MB, solutions = 1)
Root node processing (before b&c):
  Real time             =    0.02 sec. (4.93 ticks)
Parallel b&c, 16 threads:
  Real time             =    0.00 sec. (0.00 ticks)
  Sync time (average)   =    0.00 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.02 sec. (4.93 ticks)


🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]李淋,徐青山,王晓晴,凌静,孙海翔.基于共享储能电站的工业用户日前优化经济调度[J].电力建设,2020,41(05):100-107.

相关文章
|
9天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
97 14
|
9天前
|
存储 算法 安全
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
|
9天前
|
算法 数据可视化 异构计算
【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究(Matlab代码实现)
【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究(Matlab代码实现)
|
11天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
11天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
11天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
|
11天前
|
机器学习/深度学习 传感器 边缘计算
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
11天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)

热门文章

最新文章