基于共享储能电站的工业用户日前优化经济调度(Matlab代码实现)

简介: 基于共享储能电站的工业用户日前优化经济调度(Matlab代码实现)

💥1 概述

文献来源:


储能技术广泛应用于调频、调峰、平抑可再生能源出力波动、需求侧响应、提高用户可靠性等领域,对能源互联网的发展起到重要支撑作用。通过储能系统在电网电价谷时段存储电能,在电价峰时段释放电能供给用户,可以为用户节省用电成本,同时缓解电网调峰压力[2,3,4]。国家和地方政府大力推广储能技术的应用,储能的发展前景广阔。


目前关于共享储能的研究处于起步阶段,现有的工作以共享储能系统为主要研究对象,分析共享储能系统的商业模式和盈利情况,没有对用户参与共享储能系统的充放电行为和经济效益做深入研究。

本文在用户群间引入共享储能电站,建立以用户群日运行成本最优为目标的优化调度模型,分析用户群接入共享储能电站后的充放电行为和经济效益,并对共享储能电站的投资回收年限等经济性指标与服务费定价关系做出进一步的研究。


1.1 共享储能电站概念及运营模式

共享储能电站的概念如图 1 所示,储能电站运营商利用资金优势在用户群间建立大型共享储能电站,对储能电站进行统一运营管理,为同一配电网区域内的多个用户提供共享储能服务。

1.2 基于共享储能的优化调度模型

📚2 运行结果

2.1 场景分析

CPXPARAM_Simplex_Display                         2
CPXPARAM_MIP_Tolerances_MIPGap                   9.9999999999999995e-07
CPXPARAM_Barrier_Display                         2
Tried aggregator 3 times.
MIP Presolve eliminated 479 rows and 53 columns.
Aggregator did 159 substitutions.
Reduced MIP has 373 rows, 229 columns, and 1198 nonzeros.
Reduced MIP has 46 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (1.67 ticks)
Found incumbent of value 4919.153611 after 0.03 sec. (2.56 ticks)
Probing fixed 0 vars, tightened 46 bounds.
Probing time = 0.00 sec. (0.05 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 256 rows and 147 columns.
MIP Presolve modified 64 coefficients.
Reduced MIP has 117 rows, 82 columns, and 396 nonzeros.
Reduced MIP has 17 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (0.31 ticks)
Probing time = 0.00 sec. (0.01 ticks)
Tried aggregator 1 time.
Reduced MIP has 117 rows, 82 columns, and 396 nonzeros.
Reduced MIP has 17 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (0.19 ticks)
Probing time = 0.00 sec. (0.01 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.00 sec. (0.29 ticks)
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap
*     0+    0                         2776.7029     2633.8312             5.15%
      0     0        cutoff           2776.7029                     24    0.00%
Root node processing (before b&c):
  Real time             =    0.05 sec. (7.26 ticks)
Parallel b&c, 16 threads:
  Real time             =    0.00 sec. (0.00 ticks)
  Sync time (average)   =    0.00 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.05 sec. (7.26 ticks)
----------用户A部分------------
最优储能容量规划值为 : 2796.5625 kWh
最优储能充放电功率最大值为 : 590 kW
----------用户B部分------------
最优储能容量规划值为 : 739.2434 kWh
最优储能充放电功率最大值为 : 130 kW
----------用户C部分------------
最优储能容量规划值为 : 698.0099 kWh
最优储能充放电功率最大值为 : 80 kW
>> 
CPXPARAM_Simplex_Display                         2
CPXPARAM_MIP_Tolerances_MIPGap                   9.9999999999999995e-07
CPXPARAM_Barrier_Display                         2
Tried aggregator 3 times.
MIP Presolve eliminated 479 rows and 53 columns.
Aggregator did 159 substitutions.
Reduced MIP has 373 rows, 229 columns, and 1198 nonzeros.
Reduced MIP has 46 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (1.67 ticks)
Found incumbent of value 4919.153611 after 0.03 sec. (2.56 ticks)
Probing fixed 0 vars, tightened 46 bounds.
Probing time = 0.00 sec. (0.05 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 256 rows and 147 columns.
MIP Presolve modified 64 coefficients.
Reduced MIP has 117 rows, 82 columns, and 396 nonzeros.
Reduced MIP has 17 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (0.31 ticks)
Probing time = 0.00 sec. (0.01 ticks)
Tried aggregator 1 time.
Reduced MIP has 117 rows, 82 columns, and 396 nonzeros.
Reduced MIP has 17 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (0.19 ticks)
Probing time = 0.00 sec. (0.01 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.00 sec. (0.29 ticks)
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap
*     0+    0                         2776.7029     2633.8312             5.15%
      0     0        cutoff           2776.7029                     24    0.00%
Root node processing (before b&c):
  Real time             =    0.05 sec. (7.26 ticks)
Parallel b&c, 16 threads:
  Real time             =    0.00 sec. (0.00 ticks)
  Sync time (average)   =    0.00 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.05 sec. (7.26 ticks)
----------用户A部分------------
最优储能容量规划值为 : 2796.5625 kWh
最优储能充放电功率最大值为 : 590 kW
----------用户B部分------------
最优储能容量规划值为 : 739.2434 kWh
最优储能充放电功率最大值为 : 130 kW
----------用户C部分------------
最优储能容量规划值为 : 698.0099 kWh
最优储能充放电功率最大值为 : 80 kW
>> 

2.2 接入共享储能电站优化结果分析

Aggregator did 91 substitutions.
Reduced MIP has 259 rows, 277 columns, and 858 nonzeros.
Reduced MIP has 69 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (1.05 ticks)
Probing fixed 9 vars, tightened 111 bounds.
Probing time = 0.00 sec. (0.09 ticks)
Cover probing fixed 1 vars, tightened 28 bounds.
Tried aggregator 2 times.
MIP Presolve eliminated 81 rows and 66 columns.
MIP Presolve modified 132 coefficients.
Aggregator did 6 substitutions.
Reduced MIP has 172 rows, 205 columns, and 568 nonzeros.
Reduced MIP has 59 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (0.42 ticks)
Probing fixed 0 vars, tightened 9 bounds.
Probing time = 0.00 sec. (0.04 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 1 rows and 0 columns.
MIP Presolve modified 9 coefficients.
Reduced MIP has 171 rows, 205 columns, and 565 nonzeros.
Reduced MIP has 59 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (0.33 ticks)
Probing time = 0.00 sec. (0.04 ticks)
Clique table members: 7.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.00 sec. (0.43 ticks)
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap
*     0     0      integral     0     2202.4575     2202.4575       20    0.00%
Elapsed time = 0.02 sec. (4.91 ticks, tree = 0.00 MB, solutions = 1)
Root node processing (before b&c):
  Real time             =    0.02 sec. (4.93 ticks)
Parallel b&c, 16 threads:
  Real time             =    0.00 sec. (0.00 ticks)
  Sync time (average)   =    0.00 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.02 sec. (4.93 ticks)


🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]李淋,徐青山,王晓晴,凌静,孙海翔.基于共享储能电站的工业用户日前优化经济调度[J].电力建设,2020,41(05):100-107.

相关文章
|
8天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
6天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
247 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
146 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
116 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章