微电网两阶段鲁棒优化(Matlab代码实现)

简介: 微电网两阶段鲁棒优化(Matlab代码实现)

💥1 概述

站在巨人的肩膀上:

参考文献:


📚2两阶段鲁棒模型及求解方法

2.1 两阶段鲁棒优化模型

2.2求解方法

🎁 3 目标函数和约束条件

3.1 目标函数

3.2 约束条件

3.3 两阶段鲁棒模型:


高峰电价时段为9:00-11:00和19:00-23:00,电价均为1.35元/kWh,低谷电价时段为24:00-8:00和12:00-18:00,电价分别为0.48元/kWh和0.9元/kWh。

光伏出力:  光伏出力归一值

风机出力: 风机出力归一值

CPXPARAM_MIP_Display                             1
Tried aggregator 1 time.
MIP Presolve eliminated 779 rows and 47 columns.
MIP Presolve modified 576 coefficients.
Reduced MIP has 1823 rows, 1110 columns, and 9311 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (5.00 ticks)
Probing fixed 0 vars, tightened 11 bounds.
Probing time = 0.00 sec. (1.69 ticks)
Tried aggregator 1 time.
Reduced MIP has 1823 rows, 1110 columns, and 9311 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (3.87 ticks)
Probing time = 0.00 sec. (1.59 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.558508e+06  Node =       0  Best node =   2.128983e+04
Best integer =   5.306653e+04  Node =       0  Best node =   2.128983e+04
Best integer =   4.746628e+04  Node =       0  Best node =   4.745700e+04
Best integer =   4.746130e+04  Node =       0  Best node =   4.745700e+04
Implied bound cuts applied:  3
Mixed integer rounding cuts applied:  6
Gomory fractional cuts applied:  5
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 3609 rows and 1057 columns.
MIP Presolve modified 3183 coefficients.
Aggregator did 61 substitutions.
Reduced MIP has 3054 rows, 2726 columns, and 21043 nonzeros.
Reduced MIP has 1318 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (30.72 ticks)
Probing fixed 3 vars, tightened 122 bounds.
Probing time = 0.02 sec. (1.13 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 129 rows and 103 columns.
MIP Presolve modified 618 coefficients.
Aggregator did 79 substitutions.
Reduced MIP has 2846 rows, 2544 columns, and 20519 nonzeros.
Reduced MIP has 1201 binaries, 1 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (24.01 ticks)
Probing time = 0.00 sec. (1.04 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -1.749242e+04  Node =       0  Best node =  -2.422582e+04
Best integer =  -1.769821e+04  Node =       0  Best node =  -2.422582e+04
Best integer =  -2.418924e+04  Node =       0  Best node =  -2.422582e+04
Clique cuts applied:  12
Cover cuts applied:  6
Implied bound cuts applied:  52
Mixed integer rounding cuts applied:  151
Gomory fractional cuts applied:  52
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.00 sec. (0.53 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (3.64 ticks)
Probing time = 0.00 sec. (0.26 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.435047e+06  Node =       0  Best node =   4.559537e+04
Best integer =   1.601358e+05  Node =       0  Best node =   4.559537e+04
Best integer =   6.747812e+04  Node =       0  Best node =   6.747487e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 3639 rows and 1096 columns.
MIP Presolve modified 3189 coefficients.
Aggregator did 60 substitutions.
Reduced MIP has 3025 rows, 2688 columns, and 20940 nonzeros.
Reduced MIP has 1306 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (30.45 ticks)
Probing fixed 2 vars, tightened 129 bounds.
Probing time = 0.00 sec. (1.35 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 145 rows and 116 columns.
MIP Presolve modified 592 coefficients.
Aggregator did 73 substitutions.
Reduced MIP has 2807 rows, 2499 columns, and 20394 nonzeros.
Reduced MIP has 1187 binaries, 1 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (23.83 ticks)
Probing fixed 0 vars, tightened 2 bounds.
Probing time = 0.00 sec. (1.22 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -2.149270e+04  Node =       0  Best node =  -2.676388e+04
Best integer =  -2.181844e+04  Node =       0  Best node =  -2.676289e+04
Clique cuts applied:  16
Cover cuts applied:  23
Implied bound cuts applied:  100
Flow cuts applied:  7
Mixed integer rounding cuts applied:  143
Gomory fractional cuts applied:  60
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.02 sec. (0.50 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (3.64 ticks)
Probing time = 0.00 sec. (0.22 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.434795e+06  Node =       0  Best node =   4.387395e+04
Best integer =   1.597238e+05  Node =       0  Best node =   4.387395e+04
Best integer =   6.835990e+04  Node =       0  Best node =   6.835665e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 3833 rows and 1275 columns.
MIP Presolve modified 3181 coefficients.
Aggregator did 67 substitutions.
Reduced MIP has 2824 rows, 2502 columns, and 20363 nonzeros.
Reduced MIP has 1221 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (30.34 ticks)
Probing fixed 0 vars, tightened 97 bounds.
Probing time = 0.00 sec. (1.31 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 137 rows and 108 columns.
MIP Presolve modified 552 coefficients.
Aggregator did 61 substitutions.
Reduced MIP has 2626 rows, 2333 columns, and 19897 nonzeros.
Reduced MIP has 1122 binaries, 3 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (19.99 ticks)
Probing time = 0.00 sec. (1.14 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -2.439674e+04  Node =       0  Best node =  -2.890634e+04
Best integer =  -2.886494e+04  Node =     524  Best node =  -2.890295e+04
Clique cuts applied:  16
Cover cuts applied:  16
Implied bound cuts applied:  31
Flow cuts applied:  7
Mixed integer rounding cuts applied:  100
Gomory fractional cuts applied:  56
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.02 sec. (0.49 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (3.64 ticks)
Probing time = 0.00 sec. (0.22 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.435291e+06  Node =       0  Best node =   4.228469e+04
Best integer =   1.616469e+05  Node =       0  Best node =   4.228469e+04
Best integer =   6.925787e+04  Node =       0  Best node =   6.925463e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 3924 rows and 1372 columns.
MIP Presolve modified 3186 coefficients.
Aggregator did 72 substitutions.
Reduced MIP has 2728 rows, 2400 columns, and 20066 nonzeros.
Reduced MIP has 1180 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (30.04 ticks)
Probing fixed 0 vars, tightened 82 bounds.
Probing time = 0.00 sec. (1.30 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 150 rows and 120 columns.
MIP Presolve modified 451 coefficients.
Reduced MIP has 2578 rows, 2280 columns, and 19692 nonzeros.
Reduced MIP has 1130 binaries, 6 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (8.66 ticks)
Probing time = 0.00 sec. (1.16 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -3.044507e+04  Node =       0  Best node =  -3.202296e+04
Best integer =  -3.044582e+04  Node =       0  Best node =  -3.093878e+04
Best integer =  -3.044609e+04  Node =       0  Best node =  -3.089980e+04
Best integer =  -3.050281e+04  Node =       0  Best node =  -3.089980e+04
Clique cuts applied:  12
Cover cuts applied:  44
Implied bound cuts applied:  19
Flow cuts applied:  7
Mixed integer rounding cuts applied:  53
Gomory fractional cuts applied:  28
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.00 sec. (0.48 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (3.64 ticks)
Probing time = 0.00 sec. (0.21 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.435399e+06  Node =       0  Best node =   4.081637e+04
Best integer =   1.629365e+05  Node =       0  Best node =   4.081637e+04
Best integer =   6.995436e+04  Node =       0  Best node =   6.995241e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 3888 rows and 1329 columns.
MIP Presolve modified 3183 coefficients.
Aggregator did 72 substitutions.
Reduced MIP has 2764 rows, 2443 columns, and 20191 nonzeros.
Reduced MIP has 1195 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (30.24 ticks)
Probing fixed 1 vars, tightened 95 bounds.
Probing time = 0.02 sec. (1.36 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 143 rows and 113 columns.
MIP Presolve modified 522 coefficients.
Aggregator did 51 substitutions.
Reduced MIP has 2570 rows, 2279 columns, and 19730 nonzeros.
Reduced MIP has 1102 binaries, 6 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.03 sec. (19.77 ticks)
Probing time = 0.00 sec. (1.23 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -3.229320e+04  Node =       0  Best node =  -3.386904e+04
Best integer =  -3.229448e+04  Node =       0  Best node =  -3.274230e+04
Best integer =  -3.231160e+04  Node =      36  Best node =  -3.273753e+04
Best integer =  -3.267385e+04  Node =     527  Best node =  -3.273693e+04
Clique cuts applied:  10
Cover cuts applied:  31
Implied bound cuts applied:  27
Flow cuts applied:  2
Mixed integer rounding cuts applied:  50
Gomory fractional cuts applied:  31
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.00 sec. (0.46 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (3.64 ticks)
Probing time = 0.02 sec. (0.19 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.435498e+06  Node =       0  Best node =   3.945881e+04
Best integer =   1.641265e+05  Node =       0  Best node =   3.945881e+04
Best integer =   7.050950e+04  Node =       0  Best node =   7.050625e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 3969 rows and 1400 columns.
MIP Presolve modified 3173 coefficients.
Aggregator did 73 substitutions.
Reduced MIP has 2682 rows, 2371 columns, and 19965 nonzeros.
Reduced MIP has 1161 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (30.19 ticks)
Probing fixed 1 vars, tightened 86 bounds.
Probing time = 0.02 sec. (1.35 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 143 rows and 113 columns.
MIP Presolve modified 482 coefficients.
Aggregator did 41 substitutions.
Reduced MIP has 2498 rows, 2217 columns, and 19535 nonzeros.
Reduced MIP has 1078 binaries, 10 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (19.45 ticks)
Probing time = 0.02 sec. (1.27 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -3.433272e+04  Node =       0  Best node =  -3.434461e+04
Clique cuts applied:  23
Cover cuts applied:  19
Implied bound cuts applied:  64
Flow cuts applied:  19
Mixed integer rounding cuts applied:  91
Gomory fractional cuts applied:  51
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.00 sec. (0.46 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (3.64 ticks)
Probing time = 0.00 sec. (0.19 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.435587e+06  Node =       0  Best node =   3.820272e+04
Best integer =   1.652181e+05  Node =       0  Best node =   3.820272e+04
Best integer =   7.091213e+04  Node =       0  Best node =   7.090888e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 4084 rows and 1509 columns.
MIP Presolve modified 3167 coefficients.
Aggregator did 80 substitutions.
Reduced MIP has 2560 rows, 2255 columns, and 19615 nonzeros.
Reduced MIP has 1109 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (30.05 ticks)
Probing fixed 1 vars, tightened 69 bounds.
Probing time = 0.00 sec. (1.38 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 149 rows and 117 columns.
MIP Presolve modified 435 coefficients.
Aggregator did 31 substitutions.
Reduced MIP has 2380 rows, 2107 columns, and 19204 nonzeros.
Reduced MIP has 1037 binaries, 14 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (21.84 ticks)
Probing time = 0.02 sec. (1.32 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -3.531202e+04  Node =       0  Best node =  -3.670811e+04
Clique cuts applied:  15
Cover cuts applied:  47
Implied bound cuts applied:  57
Flow cuts applied:  14
Mixed integer rounding cuts applied:  102
Gomory fractional cuts applied:  72
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.00 sec. (0.45 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (3.65 ticks)
Probing time = 0.00 sec. (0.18 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.435666e+06  Node =       0  Best node =   3.703968e+04
Best integer =   7.123725e+04  Node =       0  Best node =   3.703968e+04
Best integer =   7.117944e+04  Node =       0  Best node =   7.117749e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 4124 rows and 1544 columns.
MIP Presolve modified 3156 coefficients.
Aggregator did 78 substitutions.
Reduced MIP has 2522 rows, 2222 columns, and 19509 nonzeros.
Reduced MIP has 1094 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (30.03 ticks)
Probing fixed 2 vars, tightened 69 bounds.
Probing time = 0.02 sec. (1.55 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 158 rows and 124 columns.
MIP Presolve modified 429 coefficients.
Aggregator did 31 substitutions.
Reduced MIP has 2333 rows, 2067 columns, and 19089 nonzeros.
Reduced MIP has 1023 binaries, 17 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (21.70 ticks)
Probing time = 0.00 sec. (1.32 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -3.655283e+04  Node =       0  Best node =  -3.786446e+04
Best integer =  -3.692724e+04  Node =       0  Best node =  -3.693466e+04
Clique cuts applied:  16
Cover cuts applied:  10
Implied bound cuts applied:  50
Flow cuts applied:  13
Mixed integer rounding cuts applied:  96
Zero-half cuts applied:  1
Lift and project cuts applied:  1
Gomory fractional cuts applied:  36
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.00 sec. (0.45 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (3.65 ticks)
Probing time = 0.00 sec. (0.18 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.435737e+06  Node =       0  Best node =   3.596200e+04
Best integer =   7.145608e+04  Node =       0  Best node =   3.596200e+04
Best integer =   7.139956e+04  Node =       0  Best node =   7.139632e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 4159 rows and 1563 columns.
MIP Presolve modified 3122 coefficients.
Aggregator did 61 substitutions.
Reduced MIP has 2504 rows, 2220 columns, and 19481 nonzeros.
Reduced MIP has 1091 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (30.08 ticks)
Probing fixed 1 vars, tightened 66 bounds.
Probing time = 0.00 sec. (1.43 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 143 rows and 113 columns.
MIP Presolve modified 416 coefficients.
Aggregator did 28 substitutions.
Reduced MIP has 2333 rows, 2079 columns, and 19119 nonzeros.
Reduced MIP has 1028 binaries, 21 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.03 sec. (18.87 ticks)
Probing time = 0.00 sec. (1.35 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -3.761882e+04  Node =       0  Best node =  -3.873746e+04
Clique cuts applied:  14
Cover cuts applied:  24
Implied bound cuts applied:  39
Flow cuts applied:  7
Mixed integer rounding cuts applied:  69
Gomory fractional cuts applied:  49
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.00 sec. (0.45 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (3.66 ticks)
Probing time = 0.00 sec. (0.18 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.435804e+06  Node =       0  Best node =   3.496271e+04
Best integer =   7.166073e+04  Node =       0  Best node =   3.496271e+04
Best integer =   7.160422e+04  Node =       0  Best node =   7.160097e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 4184 rows and 1592 columns.
MIP Presolve modified 3120 coefficients.
Aggregator did 59 substitutions.
Reduced MIP has 2481 rows, 2193 columns, and 19405 nonzeros.
Reduced MIP has 1082 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (29.99 ticks)
Probing fixed 0 vars, tightened 54 bounds.
Probing time = 0.02 sec. (1.41 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 140 rows and 113 columns.
MIP Presolve modified 378 coefficients.
Aggregator did 14 substitutions.
Reduced MIP has 2327 rows, 2066 columns, and 19068 nonzeros.
Reduced MIP has 1023 binaries, 23 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (18.77 ticks)
Probing time = 0.00 sec. (1.25 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -3.841269e+04  Node =       0  Best node =  -3.942486e+04
Best integer =  -3.869170e+04  Node =       0  Best node =  -3.868681e+04
Clique cuts applied:  13
Cover cuts applied:  3
Implied bound cuts applied:  23
Flow cuts applied:  6
Mixed integer rounding cuts applied:  94
Gomory fractional cuts applied:  31
CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIP Presolve eliminated 829 rows and 2 columns.
MIP Presolve modified 1008 coefficients.
Aggregator did 144 substitutions.
Reduced MIP has 1053 rows, 723 columns, and 7241 nonzeros.
Reduced MIP has 192 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.00 sec. (7.29 ticks)
Probing fixed 0 vars, tightened 24 bounds.
Probing time = 0.00 sec. (0.45 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 144 rows and 72 columns.
Reduced MIP has 909 rows, 651 columns, and 6953 nonzeros.
Reduced MIP has 120 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (3.67 ticks)
Probing time = 0.00 sec. (0.18 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =   1.436049e+06  Node =       0  Best node =   3.422789e+04
Best integer =   7.175970e+04  Node =       0  Best node =   3.422789e+04
Best integer =   7.170318e+04  Node =       0  Best node =   7.169994e+04
CPXPARAM_MIP_Display                             1
Tried aggregator 3 times.
MIP Presolve eliminated 4181 rows and 1592 columns.
MIP Presolve modified 3115 coefficients.
Aggregator did 55 substitutions.
Reduced MIP has 2488 rows, 2197 columns, and 19425 nonzeros.
Reduced MIP has 1086 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.03 sec. (29.92 ticks)
Probing fixed 1 vars, tightened 57 bounds.
Probing time = 0.00 sec. (1.40 ticks)
Tried aggregator 3 times.
MIP Presolve eliminated 138 rows and 112 columns.
MIP Presolve modified 381 coefficients.
Aggregator did 14 substitutions.
Reduced MIP has 2336 rows, 2071 columns, and 19091 nonzeros.
Reduced MIP has 1027 binaries, 26 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (18.81 ticks)
Probing time = 0.00 sec. (1.43 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Node log . . .
Best integer =  -3.896327e+04  Node =       0  Best node =  -3.993966e+04
Best integer =  -3.897429e+04  Node =       0  Best node =  -3.923728e+04
Best integer =  -3.914657e+04  Node =      17  Best node =  -3.923781e+04
Clique cuts applied:  10
Cover cuts applied:  19
Implied bound cuts applied:  30
Flow cuts applied:  11
Mixed integer rounding cuts applied:  60
Gomory fractional cuts applied:  43
时间已过 39.528332 秒。
>> 

🎉4 参考文献

[1]晏鸣宇,艾小猛,张艺镨,舒康安,甘伟,文劲宇.考虑机组禁止运行区间的含风电鲁棒机组组合[J].中国电机工程学报,2018,38(11):3195-3203.DOI:10.13334/j.0258-8013.pcsee.171138.


🌈5 Matlab代码实现

相关文章
|
1天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
4天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
19 6
|
2天前
|
传感器 算法
ANC主动降噪理论及Matlab代码实现
ANC主动降噪理论及Matlab代码实现
|
4天前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
15天前
|
算法
基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真
摘要: 本文介绍了考虑时间窗的车辆路径问题(VRPTW),在MATLAB2022a中进行测试。VRPTW涉及车辆从配送中心出发,服务客户并返回,需在指定时间窗内完成且满足车辆容量限制,目标是最小化总行驶成本。文章探讨了遗传算法(GA)和粒子群优化(PSO)的基本原理及其在VRPTW中的应用,包括编码、适应度函数、选择、交叉、变异等步骤。同时,提出了动态惯性权重、精英策略、邻域搜索、多种群和启发式信息等优化策略,以应对时间窗限制并提升算法性能。
|
14天前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
16天前
|
算法
m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法,优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码,而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程,根据误码率评估性能并更新解码参数。最终,展示了迭代次数与优化过程的关系,并绘制了SNR与误码率曲线。
18 2
|
16天前
|
算法 调度 决策智能
基于GA-PSO遗传粒子群混合优化算法的DVRP问题求解matlab仿真
该文介绍了车辆路径问题(VRP)的优化求解,特别是动态车辆路径问题(DVRP)。在MATLAB2022a中运用GA-PSO混合优化算法进行测试,展示了运行结果图像。核心程序包含粒子更新、交叉、距离计算等步骤。DVRP在物流配送、运输调度中有广泛应用,目标是最小化行驶距离并满足车辆容量限制。遗传算法通过选择、交叉和变异操作寻找解,而粒子群优化模拟鸟群行为更新速度和位置。GA-PSO混合算法结合两者优点,提高搜索效率。在DVRP中,算法需考虑问题特性和约束,以找到高质量解。
|
3天前
|
算法
基于蝗虫优化的KNN分类特征选择算法的matlab仿真
摘要: - 功能:使用蝗虫优化算法增强KNN分类器的特征选择,提高分类准确性 - 软件版本:MATLAB2022a - 核心算法:通过GOA选择KNN的最优特征以改善性能 - 算法原理: - KNN基于最近邻原则进行分类 - 特征选择能去除冗余,提高效率 - GOA模仿蝗虫行为寻找最佳特征子集,以最大化KNN的验证集准确率 - 运行流程:初始化、评估、更新,直到达到停止标准,输出最佳特征组合
|
30天前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
136 4

热门文章

最新文章