基于蚁群算法的三维路径规划算法以及蚁群算法的优化计算——TSP优化(Matlab代码实现)

简介: 基于蚁群算法的三维路径规划算法以及蚁群算法的优化计算——TSP优化(Matlab代码实现)

1 概述

1.1简介

当前社会, 很多用户需要在复杂的没有公路的山地地形, 快速、准确的规划出三维路径, 在避过障碍的同时达到某项指标最优。目前常用的路径规划算法, 大多数只能规划二维平面路径;而一般的三维规划算法, 大多运算算法复杂、需要很大的存储空间, 同时无法在宏观全局角度来进行路径规划。本文在已有三维山地地图的基础上, 采用一种改进的蚁群算法来解决上述问题。软件仿真结果显示, 基于改进蚁群算法的山地三维路径规划算法在路径最优值计算和规划时间上都能够较好的满足需求。


现在很多的自助游爱好者, 他们需要在复杂的山地地形, 寻找一条没有前人走过的路径来到达目的地。如何快速、准确的规划山地三维路径, 成为一个值得研究的新课题。所谓三维路径规划, 是在三维地图中规划出一条避开了无法通过的障碍, 同时满足某些指标最优的三维路径。目前常用的路径规划算法, 大多数只能规划二维平面路径; 而一般的三维规划算法, 大多运算算法复杂、需要很大的存储空间, 同时无法在宏观全局角度来进行路径规划。目前常用的三维规划算法有粒子群算法、遗传算法、A*算法等, 但粒子群算法与遗传算法只是准三维算法, 而A*算法当维数增加时计算量会急剧增加。本文在已有三维山地地图的基础上, 采用一种改进的蚁群算法来解决上述问题。


1.2 改进的蚁群算法

Dorigo M等人在90年代初提出了蚁群算法, 它是基于仿生蚂蚁搜索行为的一种进化算法。观察者发现, 蚂蚁在搜索找寻食物时, 会在爬过的路上留下分泌物, 这种分泌物包含了蚂蚁的信息素。这种信息素会慢慢挥发, 但是后续的蚂蚁能够检测到这种信息素的存在; 并且后续蚂蚁会优先选择信息素浓度较高的路径点, 同时它们在进过的时候还会再次留下信息素。这样该路径点的信息素浓度会不断增大, 同时也会更加吸引后续的蚂蚁。蚁群算法根据蚂蚁的觅食行为设计, 它具有群体智能并有分布式计算的优点, 因此它在路径选择上具有很大的潜力。


2 部分运行结果

2.1 三维路径规划算法

2.2 TSP优化算法

3 Matlab代码实现

%% 该函数用于演示基于蚁群算法的三维路径规划算法
%% 清空环境
clc
clear
%% 数据初始化
%下载数据
load  HeightData HeightData
%网格划分
LevelGrid=10;
PortGrid=21;
%起点终点网格点 
starty=10;starth=4;
endy=8;endh=5;
m=1;
%算法参数
PopNumber=10;         %种群个数
BestFitness=[];    %最佳个体
%初始信息素
pheromone=ones(21,21,21);
%% 初始搜索路径
[path,pheromone]=searchpath(PopNumber,LevelGrid,PortGrid,pheromone, ...
    HeightData,starty,starth,endy,endh); 
fitness=CacuFit(path);                          %适应度计算
[bestfitness,bestindex]=min(fitness);           %最佳适应度
bestpath=path(bestindex,:);                     %最佳路径
BestFitness=[BestFitness;bestfitness];          %适应度值记录
完整代码见:
https://pan.baidu.com/s/1-bKtBELgOR7UQUHLpmxvzQ 
                     提取码:se7z 


4 参考文献

[1]黄劲潮.一种基于改进蚁群算法的山地三维路径规划算法[J].荆楚理工学院学报,2014,29(02):40-44.

部分理论来源于网络,如有侵权请联系删除。

相关文章
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
29天前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
49 10
|
26天前
|
机器学习/深度学习 边缘计算 算法
NOMA和OFDMA优化算法分析
NOMA和OFDMA优化算法分析
51 6
|
24天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
29天前
|
算法
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
31 1
|
1月前
|
算法 数据可视化
基于自混合干涉测量系统的线展宽因子估计算法matlab仿真
本程序基于自混合干涉测量系统,使用MATLAB2022A实现线展宽因子(a因子)估计算法仿真。通过对比分析自由载流子效应、带间跃迁、带隙收缩等因素对a因子的影响,揭示其物理机制。核心代码分别计算了不同效应对a因子的贡献,并绘制相应曲线进行可视化展示。自混合干涉测量技术利用激光反馈效应实现物体物理量测量,而线展宽因子描述了激光输出频率随功率变化的敏感程度,是研究半导体激光器特性的重要参数。该算法为光学测量和激光器研究提供了有效工具。
|
1月前
|
传感器 算法 安全
基于云模型的车辆行驶速度估计算法matlab仿真
本项目基于云模型的车辆行驶速度估计算法,利用MATLAB2022A实现仿真。相比传统传感器测量方法,该算法通过数据驱动与智能推理间接估计车速,具备低成本、高适应性特点。核心程序通过逆向正态云发生器提取样本数据的数字特征(期望、熵、超熵),再用正向云发生器生成云滴进行速度估算。算法结合优化调整云模型参数及规则库更新,提升速度估计准确性。验证结果显示,其估算值与高精度传感器测量值高度吻合,适用于交通流量监测、安全预警等场景。
|
1月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
1月前
|
算法 自动驾驶 机器人
基于Astar的复杂栅格地图路线规划算法matlab仿真
本项目基于A*算法实现复杂栅格地图的路径规划,适用于机器人导航、自动驾驶及游戏开发等领域。通过离散化现实环境为栅格地图,每个栅格表示空间区域属性(如可通行性)。A*算法利用启发函数评估节点,高效搜索从起点到终点的近似最优路径。项目在MATLAB2022a中运行,核心程序包含路径回溯与地图绘制功能,支持障碍物建模和路径可视化。理论结合实践,该方法具有重要应用价值,并可通过技术优化进一步提升性能。

热门文章

最新文章