Python排序算法大PK:归并VS快速,谁才是你的效率之选?

简介: 【7月更文挑战第13天】归并排序** 使用分治法,稳定且平均时间复杂度O(n log n),适合保持元素顺序和并行处理。

在Python编程的世界里,排序算法是处理数据不可或缺的工具,它们帮助我们以有序的方式组织和检索信息。在众多排序算法中,归并排序(Merge Sort)和快速排序(Quick Sort)以其高效的性能而备受推崇。两者各有千秋,本文将深入探讨它们的工作原理、性能特点,并通过示例代码进行直观比较,助你做出效率之选。

归并排序(Merge Sort)
归并排序是一种分治策略的排序算法。它将一个数组分成两半,分别对这两半进行排序,然后将结果合并起来。这个过程一直递归进行,直到子数组的长度为1(自然有序),然后开始合并过程。归并排序的主要优势在于其稳定性(即相等元素的相对顺序在排序前后保持不变)和平均情况下的高效性(时间复杂度为O(n log n))。

示例代码:

python
def merge_sort(arr):
if len(arr) > 1:
mid = len(arr) // 2
L = arr[:mid]
R = arr[mid:]

    merge_sort(L)  
    merge_sort(R)  

    i = j = k = 0  

    # 合并两个已排序的部分  
    while i < len(L) and j < len(R):  
        if L[i] < R[j]:  
            arr[k] = L[i]  
            i += 1  
        else:  
            arr[k] = R[j]  
            j += 1  
        k += 1  

    # 检查是否有剩余元素  
    while i < len(L):  
        arr[k] = L[i]  
        i += 1  
        k += 1  

    while j < len(R):  
        arr[k] = R[j]  
        j += 1  
        k += 1  

示例使用

arr = [12, 11, 13, 5, 6, 7]
merge_sort(arr)
print("Sorted array is:", arr)
快速排序(Quick Sort)
快速排序是另一种高效的排序算法,它采用分而治之的策略,但选择基准元素的方式与归并排序不同。快速排序通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分的所有数据要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以达到整个数据变成有序序列。快速排序的平均时间复杂度也是O(n log n),但在最坏情况下(如数组已排序或基准选择不当)会退化到O(n^2)。

示例代码:

python
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quick_sort(left) + middle + quick_sort(right)

示例使用

arr = [10, 7, 8, 9, 1, 5]
sorted_arr = quick_sort(arr)
print("Sorted array is:", sorted_arr)
效率之选
在选择归并排序或快速排序时,需要考虑具体的应用场景。归并排序因其稳定性在需要保持元素相对顺序的场合更具优势,同时其递归合并过程易于并行处理,适用于多核处理器环境。而快速排序因其在实际应用中常能达到更优的性能(特别是在基准选择得当的情况下),以及较少的额外存储空间需求(原地排序),在许多场景下成为首选。

总的来说,没有绝对的“效率之选”,选择哪种排序算法取决于具体需求、数据特性以及性能要求。

相关文章
|
1月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
1月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
114 5
|
2月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
181 26
|
2月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
229 2
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
181 0
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
216 0
|
2月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
315 4
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
439 4
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
238 3
|
2月前
|
算法 机器人 定位技术
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
148 4

热门文章

最新文章

推荐镜像

更多