“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度

简介: 【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**

在Python的广阔世界里,数据结构是构建高效算法的基石。当谈及复杂的数据关系与交互时,图(Graph)这一高级数据结构无疑占据了举足轻重的地位。不同于线性结构如列表和树,图通过节点(Vertex)和边(Edge)的任意连接,展现了数据间错综复杂的关系。解锁图的表示与遍历技巧,不仅能让你的算法思维跃升至新高度,还能在解决实际问题时游刃有余。

图的表示
在Python中,图可以通过多种方式表示,其中最常见的是邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。

邻接矩阵:使用一个二维数组(或列表的列表)来存储图中每对顶点之间是否存在边。如果顶点i与顶点j之间有边,则对应位置为1(或边的权重),否则为0。这种方法简单直观,但空间复杂度较高,特别是对于稀疏图。

python

邻接矩阵表示法

graph = [
[0, 1, 0, 0, 1],
[1, 0, 1, 1, 1],
[0, 1, 0, 1, 0],
[0, 1, 1, 0, 1],
[1, 1, 0, 1, 0]
]
邻接表:使用字典(或列表的列表)来存储每个顶点的所有邻接点。这种方法空间效率高,特别适用于稀疏图。

python

邻接表表示法

graph = {
'A': ['B', 'E'],
'B': ['A', 'C', 'D', 'E'],
'C': ['B', 'D'],
'D': ['B', 'C', 'E'],
'E': ['A', 'B', 'D']
}
图的遍历
图的遍历是理解图结构和解决图问题的关键步骤,主要有深度优先搜索(DFS)和广度优先搜索(BFS)两种策略。

深度优先搜索(DFS):从某一顶点出发,尽可能深地搜索图的分支,直到该顶点所在的路径到达末尾,再回溯到前一个顶点继续搜索其他路径。

python
def dfs(graph, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
print(start, end=' ')
for next_node in graph[start]:
if next_node not in visited:
dfs(graph, next_node, visited)

调用DFS

dfs(graph, 'A')
广度优先搜索(BFS):从某一顶点开始,先访问其所有邻接点,再逐层向外访问,直到访问完所有可达的顶点。

python
from collections import deque

def bfs(graph, start):
visited = set()
queue = deque([start])

while queue:  
    vertex = queue.popleft()  
    if vertex not in visited:  
        print(vertex, end=' ')  
        visited.add(vertex)  
        queue.extend(set(graph[vertex]) - visited)  

调用BFS

bfs(graph, 'A')
总结
通过对比邻接矩阵与邻接表的不同表示方式,我们可以根据图的稀疏程度选择最适合的存储方式。而深度优先搜索与广度优先搜索则各有千秋,DFS更适合于寻找解的路径或判断图中是否存在环,BFS则常用于求解最短路径问题。掌握这些高级数据结构的表示与遍历方法,无疑能让你的算法思维更加灵活多变,为解决复杂问题提供有力支持。

相关文章
|
9天前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
110 26
|
18天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
|
18天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
|
18天前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
117 4
|
18天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
|
18天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
|
18天前
|
算法 机器人 定位技术
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
机器学习/深度学习 算法 自动驾驶
139 0
|
26天前
|
算法 定位技术 调度
基于蚂蚁优化算法的柔性车间调度研究(Python代码实现)
基于蚂蚁优化算法的柔性车间调度研究(Python代码实现)
|
26天前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)

热门文章

最新文章

推荐镜像

更多