“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度

简介: 【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**

在Python的广阔世界里,数据结构是构建高效算法的基石。当谈及复杂的数据关系与交互时,图(Graph)这一高级数据结构无疑占据了举足轻重的地位。不同于线性结构如列表和树,图通过节点(Vertex)和边(Edge)的任意连接,展现了数据间错综复杂的关系。解锁图的表示与遍历技巧,不仅能让你的算法思维跃升至新高度,还能在解决实际问题时游刃有余。

图的表示
在Python中,图可以通过多种方式表示,其中最常见的是邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。

邻接矩阵:使用一个二维数组(或列表的列表)来存储图中每对顶点之间是否存在边。如果顶点i与顶点j之间有边,则对应位置为1(或边的权重),否则为0。这种方法简单直观,但空间复杂度较高,特别是对于稀疏图。

python

邻接矩阵表示法

graph = [
[0, 1, 0, 0, 1],
[1, 0, 1, 1, 1],
[0, 1, 0, 1, 0],
[0, 1, 1, 0, 1],
[1, 1, 0, 1, 0]
]
邻接表:使用字典(或列表的列表)来存储每个顶点的所有邻接点。这种方法空间效率高,特别适用于稀疏图。

python

邻接表表示法

graph = {
'A': ['B', 'E'],
'B': ['A', 'C', 'D', 'E'],
'C': ['B', 'D'],
'D': ['B', 'C', 'E'],
'E': ['A', 'B', 'D']
}
图的遍历
图的遍历是理解图结构和解决图问题的关键步骤,主要有深度优先搜索(DFS)和广度优先搜索(BFS)两种策略。

深度优先搜索(DFS):从某一顶点出发,尽可能深地搜索图的分支,直到该顶点所在的路径到达末尾,再回溯到前一个顶点继续搜索其他路径。

python
def dfs(graph, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
print(start, end=' ')
for next_node in graph[start]:
if next_node not in visited:
dfs(graph, next_node, visited)

调用DFS

dfs(graph, 'A')
广度优先搜索(BFS):从某一顶点开始,先访问其所有邻接点,再逐层向外访问,直到访问完所有可达的顶点。

python
from collections import deque

def bfs(graph, start):
visited = set()
queue = deque([start])

while queue:  
    vertex = queue.popleft()  
    if vertex not in visited:  
        print(vertex, end=' ')  
        visited.add(vertex)  
        queue.extend(set(graph[vertex]) - visited)  
AI 代码解读

调用BFS

bfs(graph, 'A')
总结
通过对比邻接矩阵与邻接表的不同表示方式,我们可以根据图的稀疏程度选择最适合的存储方式。而深度优先搜索与广度优先搜索则各有千秋,DFS更适合于寻找解的路径或判断图中是否存在环,BFS则常用于求解最短路径问题。掌握这些高级数据结构的表示与遍历方法,无疑能让你的算法思维更加灵活多变,为解决复杂问题提供有力支持。

目录
打赏
0
1
1
0
281
分享
相关文章
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
536 55
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
303 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
20天前
|
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
39 6
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
148 66
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
79 12
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
65 9
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
75 10
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
76 17
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
179 67
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等