【信号处理】基于遗传算法的噪声图像的边缘检测(Matlab代码实现)

简介: 【信号处理】基于遗传算法的噪声图像的边缘检测(Matlab代码实现)

💥1 概述

     图像的边缘是指图像灰度急剧发生变化的不连续的地方,主要存在于目标和目标、背景和目标、不同色彩的区域之间,包含着图像的重要信息,在图像分析和理解中起着重要作用。


    图像的边缘检测就是检测图像中灰度不连续的地方,是数字图像处理领域重要的分支之一。检测边缘的难点在于如何精确地定义边缘,随着研究的深入,学者提出了不同的边缘模型,多数边缘检测器的设计都基于某一种固定的边缘模型。例如,基于梯度的边缘检测方法将边缘视为灰度变化速率快的像素点集合,Konishi依据“边缘”和“非边缘”滤波器的统计规律来定义物体边缘",Peli 则提出基于视觉模型的算法3,将视觉可接受范围作为滤波频段,其阈值为人眼的对比敏感度。

📚2 运行结果

🎉3 参考文献


[1]徐艳蕾,赵继印,焦玉斌.噪声图像边缘检测方法的研究[J].计算机应用研究,2009,26(1):387-389

[2]刘闻,别红霞.基于蚁群算法的噪声图像边缘检测[J].软件,2013,34(12):256-259.

👨‍💻4 Matlab代码

部分代码:

function setNoiseImages(GUI_figure)
    global noises;
    imageNum = ceil(sqrt((length(noises)+1)));
    positionBase = 1/imageNum;
    shareData = guidata(GUI_figure);
    testImg = shareData.testImg;
    axes('Parent', GUI_figure,...
        'Units', 'normalized',...
        'Position',[0 1/2 1 1/2]*positionBase,...
        'Visible', 'off');
    imshow(imread(char(testImg.inImg)));
    for I = 1:length(noises)
        axes('Parent', GUI_figure,...
            'Units', 'normalized',...
            'Position',[(mod(I, imageNum)) floor((I)/imageNum)+1/2 1 1/2]*positionBase,...
            'Visible','off');
        imshow(imread(char(testImg.inNoise(I+1,:))));
    end
    text=uicontrol('Style','text',...
            'Units', 'normalized',...
            'Position',[3/7 19/20 1/7 1/20]*positionBase,...
            'String',strcat('Noise: 0%'));
    set(text,'BackGroundColor','red');
    for I = 1:imageNum
        text=uicontrol('Style','text',...
            'Units', 'normalized',...
            'Position',[(mod(I, imageNum))+3/7 floor((I)/imageNum)+19/20 1/7 1/20]*positionBase,...
            'String',['Noise: ', int2str(noises(I)*100), '%']);
        set(text,'BackGroundColor','red');
    end
    drawnow;
end
function updateNGain2Slider(hObj,event,GUI_figure)
    global noiseWeights;
    val=get(hObj,'Value');
    noiseWeights(3)=val;
    updateNGain2Text();
end
function updateNGain2Text()
    global noises;
    global noiseWeights;
    imageNum = ceil(sqrt((length(noises)+1)));
    positionBase = 1/imageNum;
    uicontrol('Style','text',...
        'Units', 'normalized',...
        'Position',[(imageNum-1) (imageNum-1)+7/20 3/10 1/20]*positionBase,...
        'String',['Noise Gain 2: ',num2str(noiseWeights(3),2)]);
end
function updateGenerationsSlider(hObj,event)
    global generations;
    val=get(hObj,'Value');
    generations=round(val);
    updateGenerationsText();
end
function updateGenerationsText()
    global noises;
    global generations;
    imageNum = ceil(sqrt((length(noises)+1)));
    positionBase = 1/imageNum;
    uicontrol('Style','text',...
        'Units', 'normalized',...
        'Position',[(imageNum-1) (imageNum-1)+17/20 3/10 1/20]*positionBase,...
        'String',['Generations: ',int2str(generations)]);
end
function updatePopSizeSlider(hObj, event)
    global popSize;
    val=get(hObj,'Value');
    popSize=round(val);
    updatePopSizeText();
end
function updatePopSizeText()
    global noises;
    global popSize;
    imageNum = ceil(sqrt((length(noises)+1)));
    positionBase = 1/imageNum;
    uicontrol('Style','text',...
        'Units', 'normalized',...
        'Position',[(imageNum-1) (imageNum-1)+16/20 3/10 1/20]*positionBase,...
        'String',['Pop Size: ',int2str(popSize)]);
end
function updateBestMatrix(inMatrix)
    global noises;
    imageNum = ceil(sqrt((length(noises)+1)));
    positionBase = 1/imageNum;
    uitable('Units', 'normalized',...
        'Position', [(imageNum-1) (imageNum-1)+2/20 1 5/20]*positionBase,...
        'Data', inMatrix);
end
function initialiseImages(GUI_figure)
    global noises;
    shareData = guidata(GUI_figure);
    img = shareData.img;
    testImg = shareData.testImg;
    % Generate and write noise and training images.
    for I=1:length(noises)
        writeLocation=strcat(testImg.inNoise(1), int2str(I), '.png');
        testImg.inNoise(I+1,:)=writeLocation;
        for II=1:5
            writeLocation=strcat(img(II).inNoise(1), int2str(I), '.png');
            img(II).inNoise(I+1,:)=writeLocation;
        end
    end
    createNoiseImage(testImg, noises, 'gaussian');

完整代码:

链接:https://pan.baidu.com/s/1EaaNNZpD-eLt4OzUnSSGNg
提取码:22ns
--来自百度网盘超级会员V2的分享

相关文章
|
12天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
19天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
21天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
21天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
21天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
40 3
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
21天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。