布谷鸟搜索算法的改进及其在优化问题中的应用(Matlab代码实现)

简介: 布谷鸟搜索算法的改进及其在优化问题中的应用(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

人类社会生活多个领域中的问题可以描述为优化问题(optimizationproblem),而求解优化问题一直是学术研究领域的热点。随着计算智能的飞速发展,越来越多的群智能算法如粒子群算法、萤火虫算法、蚁群算法、蜂群算法等在复杂优化问题中得到应用,目前应用的结果充分显现了群智能算法解决复杂优化问题的明显优势及巨大潜力。 布谷鸟搜索算法(Cuckoo Search,CS)是在2009年由学者Xin-she Yang等模仿布谷鸟寻窝产卵的行为提出的。由于其模型简单、参数少、易于实现等优点已经被成功应用到工程优化、设计优化等领域的优化问题中。但该算法在算法性能及应用领域等方面有进一步提升的空间,如求解精度、收敛速度的提高,局部寻优能力的提升,应用领域的拓展等。针对以上各方面,本论文从提升CS算法的性能出发,拓展了算法的应用领域。


✨🔎⚡运行结果⚡🔎✨

第一次运行结果:

第二次:

第三次:

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

clear all
    %% Initialization
Max_Num_Of_Population = 6000 ;
Initial_Num_Of_Population = 100 ;
Dynamic_Num_Of_Population = Initial_Num_Of_Population ;
Num_Of_Genes = 3 ;
Num_Of_Iteration = 200 ;
Lower_Band_Of_Genes = -5 ;
Upper_Band_Of_Genes =  5 ;
Lower_Num_Of_Egg = 1 ;
Upper_Num_Of_Egg =  5 ;
Alpha = 5;
Initial_Num_Of_Cluster = 40 ;
Dynamic_Num_Of_Cluster = Initial_Num_Of_Cluster;
Max = -10000000000;
Remove_Percent = 0;
Centroids = zeros ( 1 , Initial_Num_Of_Cluster ) ;
Generation_Of_Chromosome = (Upper_Band_Of_Genes - Lower_Band_Of_Genes)*rand ( Max_Num_Of_Population , Num_Of_Genes ) + Lower_Band_Of_Genes;
Generation_Of_Chromosome_Fitness = zeros ( 1 , Max_Num_Of_Population );
Number_Of_Egg = zeros ( 1 , Max_Num_Of_Population );
Range_Of_Egg = zeros ( Max_Num_Of_Population , Num_Of_Genes );
History_Of_Fitness_Improvement = zeros ( 1 , Num_Of_Iteration);
cnt = 10;
miangin = 0;
%%
for i = 1 : Num_Of_Iteration
    % Egg_Assignment_And_Placement
[ Generation_Of_Chromosome , Dynamic_Num_Of_Population ] = Egg_Assignment_And_Placement ( Alpha , Lower_Num_Of_Egg , Upper_Num_Of_Egg , Generation_Of_Chromosome , Dynamic_Num_Of_Population , Max_Num_Of_Population , Num_Of_Genes , Lower_Band_Of_Genes , Upper_Band_Of_Genes );
    % Fitness evaluation
[ Generation_Of_Chromosome_Fitness ] = Fitness_Evaluation( Generation_Of_Chromosome , Dynamic_Num_Of_Population , Generation_Of_Chromosome_Fitness );
    % remove 10 percent
[ Generation_Of_Chromosome , Dynamic_Num_Of_Population ] = Remove_Ten_Percent( Remove_Percent , Generation_Of_Chromosome , Dynamic_Num_Of_Population , Generation_Of_Chromosome_Fitness );
    % Clustering_Best_Finder
[ Max , Centroids , Dynamic_Num_Of_Cluster , Overall_Fitness , Membership_Function ] = Clustering_Best_Finder( Max , Generation_Of_Chromosome_Fitness , Generation_Of_Chromosome , Dynamic_Num_Of_Population , Dynamic_Num_Of_Cluster );
History_Of_Fitness_Improvement ( 1 , i ) = Max;
    % Moving_Toward_Best
[Generation_Of_Chromosome] = Moving_Toward_Best ( Centroids , Dynamic_Num_Of_Cluster , Overall_Fitness , Membership_Function , Generation_Of_Chromosome  , Num_Of_Genes );
    % Dynamic_Num_Of_Cluster  Update
 Dynamic_Num_Of_Cluster = 1 + round(Dynamic_Num_Of_Cluster * ( 1 - (i/Num_Of_Iteration) ));
end
plot ( 1:Num_Of_Iteration , History_Of_Fitness_Improvement);
miangin = miangin + History_Of_Fitness_Improvement ( Num_Of_Iteration );
cnt = cnt -1;


📜📢🌈参考文献🌈📢📜

[1]苏芙华,刘云连,伍铁斌.求解无约束优化问题的改进布谷鸟搜索算法[J].计算机工程,2014,40(05):224-227+233.

相关文章
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
97 14
|
9天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
|
12天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
11天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
13天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
124 15
|
14天前
|
机器学习/深度学习 传感器 算法
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
|
14天前
|
算法 安全 BI
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
9天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)

热门文章

最新文章