使用星凸随机超曲面模型对扩展对象和分组目标进行形状跟踪(Matlab代码实现)

简介: 使用星凸随机超曲面模型对扩展对象和分组目标进行形状跟踪(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

在传统目标跟踪技术中,早期由于传感器分辨率的限制,通常只能用点来描述目标,即目标每一时刻最多只能生成一个量测,只能对目标的质心位置、速度、加速度等进行估计。随着现代传感器技术发展,高分辨率传感器在工程中的应用越来越广泛,导致每个时刻可以得到不止一个量测,而扩展目标跟踪技术正是利用获得的多个量测信息,通过信息融合运算,得到对目标形状和运动状态的估计。


近些年扩展目标跟踪问题得到了广泛的关注,而对扩展目标形状进行估计是学者们研究的重点,因此,诞生了许多对扩展目标形状建模的方法。例如Baum等将扩展目标建模为随机超曲面模型(Random Hypersurface Model,RHM),该模型的核心思想是假设目标的量测源分布在目标边界的一个缩小版本之上,量测由处于缩小版本边界上的量测源和传感器噪声共同构成。星凸随机超曲面模型主要将径向函数用傅里叶级数展开从而描述目标轮廓,由展开系数实现对扩展目标形状建模,并结合尺度因子缩放扩展目标的形状完成对其表面量测源的建模。随机超曲面模型假设目标产生的每一量测由对应的量测源产生,这种建模方式弊端会造成量测方程具有较强的非线性。


✨🔎⚡运行结果⚡🔎✨

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

function randomHypersurfaceModel_2011(numberOfMeasurement)
if nargin ==0
numberOfMeasurement= 100;
end
% Number of Fourier coefficients
nr_Fourier_coeff = 11;
% State describtion prior [b0--bn, x, y]
x = zeros(nr_Fourier_coeff + 2, 1);
x(1) = 1.5;
% State covariance prior
C_x = diag([ones(1, nr_Fourier_coeff).*0.02, 0.3, 0.3]);
% Measurement noise
measurementNoise = diag([0.2, 0.2].^2);
% Scale properties
scale.mean = 0.7;
scale.variance = 0.08;
% Angular resolution for plotting
phi_vec = [0:0.01:2*pi];
% Object size
a = 3;      % -- width of the horizontal rectangle
b = 0.5;    % | height of the horizontal rectangle
c = 2;      % | height of the vertical rectangle
d = 0.5;    % -- width of the vertical rectangle
sizeObject = [a b c d];
% Object shape bounds
objectBounds = [[-d, -c];[d, -c];[d, -b];[a, -b];[a, b];[d, b];[d, c];
    [-d, c];[-d, b];[-a, b];[-a, -b];[-d, -b]]' ./ 2;
% Main
% Plot
h_object = fill(objectBounds(1, :), objectBounds(2, :), [.7 .7 .7]);
hold on
xlim([-3 3]);
ylim([-3 3]);
axis equal
xlabel('x-Axis')
ylabel('y-Axis')
title('Random Hypersurface Model Simulation')
for j = 1 : numberOfMeasurement
    % Get new measurement
    newMeasurement = getNewMeasurement(sizeObject, measurementNoise);
    % Filter step
    [x, C_x] = UKF_FilterStep(x, C_x, newMeasurement, [scale.mean; [0 0]'], ...
        blkdiag(scale.variance, measurementNoise), @f_meas_pseudo_squared, nr_Fourier_coeff);
    % Plot
    shape = calcShape(phi_vec, x, nr_Fourier_coeff);
    h_measure = plot(newMeasurement(1), newMeasurement(2), '+');
    h_shape =  plot(shape(1, :), shape(2, :), 'g-', 'linewidth', 2);
    legend([h_object, h_measure, h_shape],'Target', 'Measurement', 'Estimated shape')
    drawnow;
    if j ~= numberOfMeasurement
        delete(h_shape)
    end
end


📜📢🌈参考文献🌈📢📜

[1]李永永,王莉.星凸形随机超曲面粒子扩展目标跟踪滤波器[J].舰船电子工程,2022,42(06):42-46+75.

相关文章
|
4天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
1月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
2月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
3月前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
89 0

热门文章

最新文章

下一篇
DataWorks