基于多动作深度强化学习的柔性车间调度研究(Matlab代码实现)

简介: 基于多动作深度强化学习的柔性车间调度研究(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Python代码实现


💥1 概述

灵活作业车间调度问题(FJSP)在现代制造业中起着至关重要的作用,广泛用于各种制造工艺,例如半导体制造,汽车和纺织品制造(Brucker和Schlie,1990,Garey等人,1976,Jain和Meeran,1999,Kacem等人,2002)。它是一个广义作业车间调度问题(JSP),是计算机科学和运筹学中经典的NP-hard组合优化问题。在 FJSP 中,作业由一系列特定的连续操作组成,其中每个操作都分配给一组兼容机器中的合格机器,以优化一个或多个目标,例如 makespan、平均完成时间、最大流量时间、总延迟等(Chaudhry and Khan,2016,Xie et al.,2019)。与 JSP 问题相比,FJSP 更加复杂和灵活,因为属于作业的操作可以分配给一台或多台具有不同处理时间的兼容机器。


目前,解决NP-hard组合优化问题的现有方法可以归纳为两类:精确方法和近似方法。精确的方法,如数学规划,在整个解空间中寻找最优解,但由于它们的NP硬度,这些方法很难在合理的时间内解决大规模的调度问题(Li,Pan,&Liang,2010)。由于 FJSP 实例的棘手性,越来越多的近似方法(包括启发式、元启发式和机器学习技术)被开发出来来解决现实世界问题的实例。通常,近似方法可以在计算工作量和结果计划的质量之间实现良好的权衡。特别是群体智能(SI)和进化算法(EA),如遗传算法(GA),粒子群优化(PSO),蚁群优化(ACO),人工蜂群等,在解决FJSP实例方面显示出优势。


尽管与精确的数学优化方法相比,SI和EA可以在合理的时间内解决FJSP,但这些方法在实时调度环境中并不适用,因为当底层算法需要大量迭代时,它们仍然可能遭受不可预测的极长计算时间以获得满意的解决方案。调度规则作为启发式方法的委托,广泛应用于实时调度系统,如考虑动态事件的中断。调度规则通常具有较低的计算复杂性,并且比数学规划和元启发式更容易实现。通常,用于解决FJSP的调度规则可以分为两个基本类别:作业选择规则和机器选择规则。这些规则的设计和组合旨在最大限度地减少调度目标,例如平均流时间、平均迟到和最大迟到。然而,有效的调度规则通常需要大量的领域专业知识和试错(Zhang等人,2020),并且无法保证局部最优(Luo,2020)。


最近,深度强化学习(DRL)算法为解决具有共同特征的调度问题提供了一种可扩展的方法。一些基于学习的工作(Bengio, Lodi, & Prouvost, 2021)专注于其他类型的组合优化问题,例如旅行推销员问题(TSP)和车辆路线问题(VRP),但尚不清楚DRL已被用于研究复杂的调度问题,例如FJSP。这种知识差距促使我们为FJSP开发基于学习的方法。


通常,RL 代理根据以下行为与环境交互:代理首先接收状态st并选择一个操作一个t根据每个时间步的状态,然后获得奖励rt并转移到下一个州st+1.在 RL 的设置中,操作一个t从操作空间中选择一个.然而,本文用作业操作动作空间和机器动作空间构造了FJSP的分层多动作空间,这意味着RL的一般设置不能应用于FJSP。为了求解 FJSP,此 RL 设置涉及作业操作操作空间和机器操作空间。特别是,两个操作空间具有层次结构而不是平行结构。在每个时间步长,RL 代理从其符合条件的操作操作空间中选择一个操作操作,然后从其兼容的计算机操作空间中为所选操作选择计算机操作。兼容的机器操作空间与选定的操作操作相关。图1显示了FJSP的分层结构动作空间的示例。它包含四个以绿色显示的作业操作操作,每个作业操作操作都有一个紫色的兼容计算机操作空间。


本文提出了一个端到端的深度强化框架,用于自动学习使用图神经网络解决灵活的作业车间调度问题 (FJSP) 的策略。在 FJSP 环境中,强化代理需要在每个时间步中安排属于一组兼容计算机中合格计算机上作业的操作。这意味着代理需要同时控制多个操作。这种多作用问题被表述为多重马尔可夫决策过程(MMDP)。为了求解MMDP,我们提出了一种多指针图网络(MPGN)架构和一种称为多近端策略优化(multi-PPO)的训练算法,以学习两个子策略,包括作业操作操作策略和机器操作策略,用于将作业操作分配给机器。MPGN 体系结构由两个编码器-解码器组件组成,它们分别定义作业操作操作策略和机器操作策略,用于预测不同操作和机器上的概率分布。我们引入了FJSP的析取图表示,并使用图神经网络嵌入调度过程中遇到的局部状态。计算实验结果表明,该智能体能够学习高质量的调度策略,在求解质量和 元启发式算法的运行时间上优于手工启发式调度规则。此外,在随机实例和基准实例上获得的结果表明,学习的策略在实际实例和具有多达 2000 个操作的更大规模实例上具有良好的泛化性能。


📚2 运行结果


c6b10ddbf09f97df2c591404b3c72e3d.png


594d59598e1b85590089ad4a5d128c64.png

d5cf961a5b8a5cc1bbb947f533cc8ca7.png


99ea2ac31b9d430c7c2d5d35208dedbb.png


0427af3c8dcd2a521bafb41905cc300d.png


b761fee065880a4545583e0f648c65a7.png


🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。


2b2bf9aa462ccd4feab886f010fef486.png


🌈4 Python代码实现


目录
打赏
0
0
0
0
78
分享
相关文章
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
329 85
基于Qlearning强化学习的机器人路线规划matlab仿真
本内容展示了基于Q-learning强化学习算法的路径规划研究,包括MATLAB仿真效果、理论知识及核心代码。通过训练与测试,智能体在离散化网格环境中学习最优策略以规避障碍并到达目标。代码实现中采用epsilon-贪婪策略平衡探索与利用,并针对紧急情况设计特殊动作逻辑(如后退)。最终,Q-table收敛后可生成从起点到终点的最优路径,为机器人导航提供有效解决方案。
114 20
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
124 12
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
324 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
200 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
271 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章