LLM之高性能向量检索库

简介: LLM之高性能向量检索库

高性能向量检索库


milvus


简介


Milvus 是一个开源的向量数据库引擎,旨在提供高效的向量存储、检索和分析能力。它被设计用于处理大规模的高维向量数据,常用于机器学习、计算机视觉、自然语言处理和推荐系统等领域。Milvus 提供了多种功能和特性,使其成为处理向量数据的理想选择。以下是一些 Milvus 的主要特点:


高性能:Milvus 使用了高度优化的数据结构和索引算法,以实现快速的向量检索。它支持多种索引类型,如平面索引、倒排索引和 HNSW(Hierarchical Navigable Small World)等,这些索引能够加速向量的相似度搜索。


可扩展性:Milvus 具备良好的可扩展性,可以轻松地扩展到大规模的向量数据集。它支持分布式部署,可以在多个节点上进行数据存储和查询操作,实现高吞吐量和低延迟。


多样化的向量类型:Milvus 支持多种向量类型,包括浮点型向量、二进制向量和文本向量等。这使得它可以适应不同领域和应用中的向量数据需求。


多语言支持:Milvus 提供了多种编程语言的 SDK(软件开发工具包),包括 Python、Java、Go 和 C++ 等,使开发者可以方便地集成 Milvus 到他们的应用程序中。


可视化管理界面:Milvus 提供了一个易于使用的 Web 界面,用于管理和监控向量数据库。开发者可以通过该界面进行数据导入、索引构建和查询优化等操作,同时还能够查看系统状态和性能指标。


总之,Milvus 是一个功能强大的向量数据库引擎,通过其高性能、可扩展性和多样化的特性,能够有效地存储和检索大规模的高维向量数据。它在许多领域的应用中发挥着重要作用,帮助开发者加速向量相关任务的开发和部署。


安装


  • docker 安装镜像:docker pull milvusdb/milvus:cpu-latest

  • 创建工作目录:

mkdir milvus


cd milvus


mkdir congf


mkdir db


mkdir logs


mkdir wal


我的目录结构是:

  milvus
    ├─conf //配置文件目录
    │      server_config.yaml  //配置文件 搜索引擎配置都在这里修改
    ├─db //数据库存储目录 你的索引与向量存储的位置
    └─logs //日志存储目录 
    └─wal // 预写式日志相关配置

server_config.yaml


docker run -it milvusdb/milvus:cpu-latest bash


docker cp 74c20a680091:/var/lib/milvus/conf/server_config.yaml milvus/conf/


启动容器

docker run -td --name mymilvus -e "TZ=Asia/Shanghai" -p 19530:19530 -p 19121:19121 -v /work/lnn_workspace/chatgpt/search/milvus/conf:/var/lib/milvus/conf -v /work/lnn_workspace/chatgpt/search/milvus/db:/var/lib/milvus/db -v /work/lnn_workspace/chatgpt/search/milvus/logs:/var/lib/milvus/logs   milvusdb/milvus:cpu-latest

docker ps | grep mymilvus


[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-orhH8dlK-1685346967888)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20230519105321396.png)]


安装pymilvus

pip install pymilvus==1.1.2
ps:注意这里安装最新版本可以会无法正常调用,1.1.2经过测试可正常使用

调用

# -*- coding: utf-8 -*-  
# 导入相应的包  
import numpy as np  
from milvus import Milvus, MetricType  
# 初始化一个Milvus类,以后所有的操作都是通过milvus来的  
milvus = Milvus(host='localhost', port='19530')  
# 向量个数  
num_vec = 5000  
# 向量维度  
vec_dim = 768  
# name  
collection_name = "test_collection"  
# 创建collection,可理解为mongo的collection  
collection_param = {  
    'collection_name': collection_name,  
    'dimension': vec_dim,  
    'index_file_size': 32,  
    'metric_type': MetricType.IP  # 使用内积作为度量值  
}  
milvus.create_collection(collection_param)  
# 随机生成一批向量数据  
# 支持ndarray,也支持list  
vectors_array = np.random.rand(num_vec, vec_dim)  
# 把向量添加到刚才建立的collection中  
status, ids = milvus.insert(collection_name=collection_name, records=vectors_array)  # 返回 状态和这一组向量的ID  
milvus.flush([collection_name])  
# 输出统计信息  
print(milvus.get_collection_stats(collection_name))  
# 创建查询向量  
query_vec_array = np.random.rand(1, vec_dim)  
# 进行查询,  
status, results = milvus.search(collection_name=collection_name, query_records=query_vec_array, top_k=5)  
print(status)  
print(results)  
# 如果不用可以删掉  
status = milvus.drop_collection(collection_name)  
# 断开、关闭连接  
milvus.close()
collection_name = "test_collection"
- 定义集合名称为test_collection
collection_param = {
    'collection_name': collection_name,
    'dimension': vec_dim,
    'index_file_size': 32,
    'metric_type': MetricType.IP 
}
milvus.create_collection(collection_param)  
- collection_name 指定集合名称为test_collection
- dimension 表示集合中向量的维度,由vec_dim变量赋值
- index_file_size 设置索引文件大小为32MB
- metric_type 设置度量类型为IP,表示使用向量内积作为相似度度量
所以,这段代码定义了集合名称和相关参数,用于在Milvus服务上创建一个新的集合。
在Milvus中,集合相当于关系数据库的表,是存储向量的基本单元。在创建集合时,我们需要指定:
1. 集合名称:唯一标识一个集合
2. 向量维度:集合中向量的特征数量
3. 度量类型:测量向量之间相似度的算法,如IP(内积)、L2(欧氏距离)等
4. 索引文件大小:用于提高搜索性能,索引文件会存储向量的索引信息

faiss


简介


Faiss是Facebook开源的一个向量检索库,用于大规模向量集合的索引和搜索。主要功能包括:


1.支持多种索引结构: IVF, IVFFlat, HNSW, etc。这些索引结构可以实现高精度和高召回的向量搜索。


2.支持多种度量方式:内积,欧氏距离,cosine 相似度等。可选择合适的度量方式对向量集合建立索引。


3.快速的索引构建与搜索:Faiss使用GPU加速,可以实现亿量级向量的索引构建和搜索。


4.降维与聚类:Faiss提供PCA,IVFFlat等算法进行向量降维,并支持Kmeans算法进行向量聚类。


5.高级特性:Faiss支持在线学习,异构向量检索,索引压缩等高级特性。


Faiss的典型应用有:


1.图像检索:在大规模图片数据库中找到与输入图片最相似的图片。


2.文本匹配:快速找到与输入文本最相近的文本内容。


3.推荐系统:根据用户兴趣对大量商品进行快速检索和推荐。


4.声纹识别:在海量语音数据中实现语音识别和检索。


Faiss提供C++, Python和Java语言接口,可以轻松构建向量检索系统。如果需要管理和搜索海量高维向量,Faiss是一个非常好的选择。


安装

install faiss-cpu

调用

# 导入库  
import numpy as np  
import faiss  
# 向量个数  
num_vec = 5000  
# 向量维度  
vec_dim = 768  
# 搜索topk  
topk = 10  
# 随机生成一批向量数据  
vectors = np.random.rand(num_vec, vec_dim)  
# 创建索引  
faiss_index = faiss.IndexFlatL2(vec_dim)  # 使用欧式距离作为度量  
# 添加数据  
faiss_index.add(vectors)  
# 查询向量 假设有5个  
query_vectors = np.random.rand(5, vec_dim)  
# 搜索结果  
# 分别是 每条记录对应topk的距离和索引  
# ndarray类型 。shape:len(query_vectors)*topk  
res_distance, res_index = faiss_index.search(query_vectors, topk)  
print(res_index)  
print(res_distance)
目录
相关文章
|
机器学习/深度学习 存储 NoSQL
Graph RAG: 知识图谱结合 LLM 的检索增强
RAG(Retrieval Argumented Generation)这种基于特定任务/问题的文档检索范式中,我们通常先收集必要的上下文,然后利用具有认知能力的机器学习模型进行上下文学习(in-context learning),来合成任务的答案。这次,我们借助 LLM 的力量,强化下 RAG。
2248 0
Graph RAG: 知识图谱结合 LLM 的检索增强
|
机器学习/深度学习 人工智能 API
使用TensorRT-LLM进行高性能推理
LLM的火爆之后,英伟达(NVIDIA)也发布了其相关的推理加速引擎TensorRT-LLM。TensorRT是nvidia家的一款高性能深度学习推理SDK。此SDK包含深度学习推理优化器和运行环境,可为深度学习推理应用提供低延迟和高吞吐量。而TensorRT-LLM是在TensorRT基础上针对大模型进一步优化的加速推理库,它号称可以增加4倍的推理速度。
556 0
|
16天前
|
存储 缓存 人工智能
深度解析CPFS 在 LLM 场景下的高性能存储技术
本文深入探讨了CPFS在大语言模型(LLM)训练中的端到端性能优化策略,涵盖计算端缓存加速、智能网卡加速、数据并行访问及数据流优化等方面。重点分析了大模型对存储系统的挑战,包括计算规模扩大、算力多样性及数据集增长带来的压力。通过分布式P2P读缓存、IO加速、高性能存算通路技术以及智能数据管理等手段,显著提升了存储系统的吞吐量和响应速度,有效提高了GPU利用率,降低了延迟,从而加速了大模型的训练进程。总结了CPFS在AI训练场景中的创新与优化实践,为未来大模型发展提供了有力支持。
|
2月前
|
数据采集 人工智能 自然语言处理
文档智能与检索增强生成结合的LLM知识库方案测评:优势与改进空间
《文档智能 & RAG让AI大模型更懂业务》解决方案通过结合文档智能和检索增强生成(RAG)技术,构建企业级文档知识库。方案详细介绍了文档清洗、向量化、问答召回等步骤,但在向量化算法选择、多模态支持和用户界面上有待改进。部署过程中遇到一些技术问题,建议优化性能和增加实时处理能力。总体而言,方案在金融、法律、医疗等领域具有广泛应用前景。
77 11
|
8月前
|
弹性计算 自然语言处理 开发工具
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
|
3月前
|
机器学习/深度学习 数据采集 人工智能
文档智能和检索增强生成(RAG)——构建LLM知识库
本次体验活动聚焦于文档智能与检索增强生成(RAG)结合构建的LLM知识库,重点测试了文档内容清洗、向量化、问答召回及Prompt提供上下文信息的能力。结果显示,系统在自动化处理、处理效率和准确性方面表现出色,但在特定行业术语识别、自定义向量化选项、复杂问题处理和Prompt模板丰富度等方面仍有提升空间。
117 0
|
4月前
|
存储 机器学习/深度学习 缓存
MemLong: 基于记忆增强检索的长文本LLM生成方法
本文介绍了一种名为MemLong的创新长文本处理方法,该方法通过整合外部检索器显著增强了大型语言模型处理长上下文的能力。MemLong采用轻量级设计,利用不可训练的外部记忆库存储历史上下文和知识,并通过检索相关的块级键值对增强模型输入。其技术优势包括分布一致性、高效训练策略及扩展的上下文窗口,能够在单个GPU上处理长达80k个token的文本,同时保持计算效率和内存控制。实验结果显示,MemLong在多个长文本基准数据集上表现出色,显著提升了语言建模能力和上下文学习效果。
446 1
|
8月前
|
并行计算 算法 物联网
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
|
自然语言处理 测试技术 异构计算
使用Accelerate库在多GPU上进行LLM推理
大型语言模型(llm)已经彻底改变了自然语言处理领域。随着这些模型在规模和复杂性上的增长,推理的计算需求也显著增加。为了应对这一挑战利用多个gpu变得至关重要。
1742 0
|
8月前
|
并行计算 算法 物联网
LLM 大模型学习必知必会系列(六):量化技术解析、QLoRA技术、量化库介绍使用(AutoGPTQ、AutoAWQ)
LLM 大模型学习必知必会系列(六):量化技术解析、QLoRA技术、量化库介绍使用(AutoGPTQ、AutoAWQ)
LLM 大模型学习必知必会系列(六):量化技术解析、QLoRA技术、量化库介绍使用(AutoGPTQ、AutoAWQ)

热门文章

最新文章