【AIGC】基于检索增强技术(RAG)构建大语言模型(LLM)应用程序

简介: 【5月更文挑战第7天】基于检索增强技术(RAG)构建大语言模型(LLM)应用程序实践

[toc]


在之前的博客文章中,我们已经描述了嵌入是如何工作的,以及RAG技术是什么。本节我们我们将使用 LangChain 库以及 RAG 和嵌入技术在 Python 中构建一个简单的 LLM 应用程序。

我们将使用 LangChain 库在 Python 中构建一个简单的 LLM 应用程序。LangChain是一个流行的库,它使构建这样的应用程序变得非常容易。

我们的 RAG 应用程序将使用私有数据扩展 LLM 的知识。在这种情况下,它将是一个包含一些文本的 PDF 文件。

也可以通过使用 OpenAI 代理并通过将特定文件上传到 OpenAI 的服务器来扩展其知识库来实现类似的目标。但是,这种方法需要将我们的机密数据存储在 OpenAI 的服务器上,这可能并不总是符合我们的隐私偏好。

1.安装条件

在一开始,我们必须安装应用程序将使用的所有必需模块。让我们在终端的项目目录中编写此命令

pip install langchain-community==0.0.11 pypdf==3.17.4 langchain==0.1.0 python-dotenv==1.0.0 langchain-openai==0.0.2.post1 faiss-cpu==1.7.4 tiktoken==0.5.2 langchainhub==0.1.14

让我们创建一个“data”目录并将 PDF 文件放入其中。 我们还必须在项目目录中创建一个 main.py 文件,我们将在其中存储应用程序的整个代码。

在 main.py 文件中,我们将创建用于存储逻辑的 main() 函数。该文件将如下所示:

def main():
  print("Hello World!")

if __name__ == "__main__": 
  main()

2.导入PDF文件

我们将使用LangChain提供的名为PyPDFLoader的文档加载器。

from langchain_community.document_loaders import PyPDFLoader

pdf_path = "./data/2210.03629.pdf"

def main():
  loader = PyPDFLoader(file_path=pdf_path)
  documents = loader.load()
  print(documents) 

if __name__ == "__main__": 
  main()

首先,我们应该创建一个 PyPDFLoader 对象的实例,我们将路径传递给文件。下一步是简单地调用此对象的 load 函数,并将加载的文件保存在 documents 变量中。它将是一个由 Document 对象组成的数组,其中每个对象都是我们文件的一页的表示形式。

print() 函数应该输出一个类似于这样的数组:

[Document(page_content='[...]', metadata={'source': pdf_path, page: 1}), Document(page_content='[...]', metadata={'source': pdf_path, page: 2}), ...]

3.切割文件

我们不想将整个文档作为上下文发送到 LLM。为什么?在关于RAG的文章中对此进行了更详细的描述。为了拆分文档,我们将使用 LangChain 提供的一个名为 CharacterTextSplitter 的类,我们可以从 langchain 库中导入它:

from langchain.text_splitter import CharacterTextSplitter

然后我们可以创建一个实例并调用 split_documents() 函数,将加载的文档作为参数传递。

def main():
  loader = PyPDFLoader(file_path=pdf_path) 
  documents = loader.load() 
  text_splitter = CharacterTextSplitter( chunk_size=1000, chunk_overlap=50, separator="\n" ) 
  docs = text_splitter.split_documents(documents)

让我们简要描述一下这里发生了什么。

首先,我们将创建一个 CharacterTextSplitter 对象,该对象采用多个参数:

  • chunk_size - 定义以令牌为单位的单个块的最大大小。
  • chunk_overlap - 定义块之间的重叠大小。这有助于通过确保块不会以扭曲其含义的方式拆分来保留拆分文本的含义。
  • separator - 定义将用于描述块的分隔符。

在 docs 变量中,我们将得到一个 Document 对象数组 - 与 PyPDFLoader 类的 load() 函数相同。

4.准备环境变量

下一步是将这些块转换为数字向量,并将它们存储在向量数据库中。这个过程叫做嵌入,也有一篇关于它的博文,所以我们现在不会详细介绍它。

对于嵌入过程,我们需要一个外部嵌入模型。为此,我们将使用 OpenAI 嵌入。为此,我们必须生成一个 OpenAI API 密钥。
但在此之前,我们必须创建一个 .env 文件,用于存储此密钥。

现在,我们需要在 platform.openai.com/docs/overview 页面上创建一个帐户。 之后,我们应该通过创建一个新的密钥在 platform.openai.com/api-keys 页面上生成一个 API 密钥。

复制密钥并将其粘贴到 .env 文件中,如下所示:

OPENAI_API_KEY=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

让我们通过导入 load_dotenv 函数将环境变量加载到我们的项目中:

from dotenv import load_dotenv

并在 main 函数的开头调用它:

def main(): 
    load_dotenv()
    loader = PyPDFLoader(file_path=pdf_path) 
    documents = loader.load() 
    text_splitter = CharacterTextSplitter( chunk_size=1000, chunk_overlap=50, separator="\n" ) 
    docs = text_splitter.split_documents(documents)

5.直线嵌入功能

首先,我们必须导入 OpenAIEmbeddings 类:

from langchain_openai import OpenAIEmbeddings

我们应该创建这个类的实例。让我们将其分配给 'embeddings' 变量,如下所示:

embeddings = OpenAIEmbeddings()

6.设置向量数据库

我们已经加载并准备了我们的文件,我们还为嵌入模型创建了一个对象实例。我们现在已准备好将块转换为数字向量并将它们保存在向量数据库中。我们将使用 FAISS 矢量数据库将所有数据保存在本地。Facebook AI 相似度搜索 (Faiss) 是 Facebook AI 设计的一款工具,用于对密集向量进行有效的相似性搜索和聚类。

首先,我们需要导入 FAISS 实例:

from langchain_community.vectorstores.faiss import FAISS

并实现转换和保存嵌入的过程:

def main(): 
    load_dotenv() 
    loader = PyPDFLoader(file_path=pdf_path) 
    documents = loader.load() 
    text_splitter = CharacterTextSplitter( chunk_size=1000, chunk_overlap=50, separator="\n" ) 
    docs = text_splitter.split_documents(documents) 
    embeddings = OpenAIEmbeddings() 
    vectorstore = FAISS.from_documents(docs, embeddings)    
    vectorstore.save_local("vector_db")

我们在代码中添加了两行。第一行采用我们的拆分块 (docs) 和嵌入模型将块从文本转换为数字向量。之后,我们将转换后的数据保存在本地的“vector_db”目录中。

7.创建提示

为了准备提示,我们将使用“langchain”中心。我们将从那里提取一个名为“langchain-ai/retrieval-qa-chat”的提示。这个提示是专门为我们的案例设计的,允许我们从提供的上下文中向模型询问事物。在引擎盖下,提示如下所示:

Answer any use questions based solely on the context below:
<context> 
{context}
</context>

让我们从“langchain”库导入一个"hub":

from langchain import hub

然后,只需使用“pull()”函数从中心检索此提示并将其存储在变量中:

retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")

8.设置大语言模型

接下来我们需要的是一个大型语言模型——在我们的例子中,它将是 OpenAI 模型之一。同样,我们需要一个 OpenAI 密钥,但我们已经将它与嵌入一起设置,因此我们不需要再做一次。

让我们继续导入模型:

from langchain_openai import ChatOpenAI, OpenAIEmbeddings

并将其分配给我们 main 函数中的一个变量:

llm = ChatOpenAI()

9.从数据库检索上下文数据

我们已经完成了向量数据库、嵌入和 LLM(大型语言模型)的准备工作。现在,我们需要使用链条连接所有东西。为此,我们需要“langchain”提供的两种类型的链。

第一个是 'create_stuff_documents_chain',我们需要从 'langchain' 库中导入它:

from langchain.chains.combine_documents import create_stuff_documents_chain

接下来,传递我们的大型语言模型 (LLM) 并提示它。

combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)

此函数返回一个 LCEL Runnable 对象,该对象需要上下文参数。运行它将如下所示:

combine_docs_chain.invoke({
   "context": docs, "input": "What is REACT in machine learning meaning?"})

10.仅检索相关数据作为上下文

它会起作用,但在这种情况下,我们将传递所有块 - 整个文档 - 作为上下文。在我们的例子中,文件有 33 页,这个上下文太大,我们可能会遇到这样的错误:

openai.BadRequestError: Error code: 400 - {'error': {'message': "This model's maximum context length is 4097 tokens. However, your messages resulted in 33846 tokens. Please reduce the length of the messages.", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}

为了解决这个问题,我们只需要将与查询相关的信息作为上下文传递。我们将通过将此链与另一条链相结合来实现这一点,该链将仅从数据库中检索对我们重要的块,并自动将它们作为上下文添加到提示中。

让我们从“langchain”库中导入该链:

from langchain.chains import create_retrieval_chain

首先,我们需要将数据库准备为检索器,这将启用对与查询相关的块的语义搜索。

retriever = FAISS.load_local("vector_db", embeddings).as_retriever()

因此,我们加载我们的目录,其中存储转换为向量的块并将其传递给嵌入函数。最后,我们将其作为检索器返回。

现在,我们可以组合我们的链:

retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain)

在后台,它将从数据库中检索相关块,并将它们作为上下文添加到我们的提示中。我们现在要做的就是使用我们的查询作为输入参数调用此链:

response = retrieval_chain.invoke({
   "input": "What is REACT in machine learning meaning?"})

作为响应,我们将收到一个包含三个变量的对象:

  • input - 我们的查询;

  • context - 我们作为上下文传递给提示的文档(块)数组;

  • answer - 由大型语言模型 (LLM) 生成的查询的答案。

10.LLM app 全部代码

我们用 .pdf 文件中的数据扩展了 LLM 模型的知识库。该模型现在能够根据我们在提示中提供的上下文来回答我们的问题。

from dotenv import load_dotenv
from langchain import hub
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores.faiss import FAISS

pdf_path = "./data/2210.03629.pdf"


def main():
    load_dotenv()

    loader = PyPDFLoader(file_path=pdf_path)
    documents = loader.load()

    text_splitter = CharacterTextSplitter(
        chunk_size=1000, chunk_overlap=50, separator="\n"
    )
    docs = text_splitter.split_documents(documents)

    embeddings = OpenAIEmbeddings()

    vectorstore = FAISS.from_documents(docs, embeddings)
    vectorstore.save_local("vector_db")

    retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")

    llm = ChatOpenAI()

    combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)

    retriever = FAISS.load_local("vector_db", embeddings).as_retriever()
    retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain)

    response = retrieval_chain.invoke(
        {"input": "What is REACT in machine learning meaning?"}
    )

    print(response["answer"])


if __name__ == "__main__":
    main()

小结

遵守前面博客中的约定,输出一节基于RAG进行大语言模型构建的内容,我们共划分了10个小节分别进行了详细介绍,希望对初学者有很好的指导作用。

小编是一名热爱人工智能的专栏作者,致力于分享人工智能领域的最新知识、技术和趋势。这里,你将能够了解到人工智能的最新应用和创新,探讨人工智能对未来社会的影响,以及探索人工智能背后的科学原理和技术实现。欢迎大家点赞,评论,收藏,让我们一起探索人工智能的奥秘,共同见证科技的进步!

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 索引
RAG 切片利器 LumberChunker 是如何智能地把文档切割成 LLM 爱吃的块
RAG 里的文档应该怎么切割比较好呢?按固定的字符数或词数?按句?按段落?加个重叠窗口?还是 ...
240 1
RAG 切片利器 LumberChunker 是如何智能地把文档切割成 LLM 爱吃的块
|
3月前
|
存储 机器学习/深度学习 PyTorch
119_LLM训练的高效内存管理与优化技术:从ZeRO到Flash Attention
大型语言模型(LLM)的训练面临着前所未有的计算和内存挑战。随着模型规模达到数百亿甚至数千亿参数,高效的内存管理成为训练成功的关键因素之一。2025年,LLM训练的内存优化技术已经取得了显著进展,从ZeRO优化器到Flash Attention等创新技术,为训练超大规模模型提供了可能。
|
3月前
|
人工智能 自然语言处理 TensorFlow
134_边缘推理:TensorFlow Lite - 优化移动端LLM部署技术详解与实战指南
在人工智能与移动计算深度融合的今天,将大语言模型(LLM)部署到移动端和边缘设备已成为行业发展的重要趋势。TensorFlow Lite作为专为移动和嵌入式设备优化的轻量级推理框架,为开发者提供了将复杂AI模型转换为高效、低功耗边缘计算解决方案的强大工具。随着移动设备硬件性能的不断提升和模型压缩技术的快速发展,2025年的移动端LLM部署已不再是遥远的愿景,而是正在成为现实的技术实践。
|
3月前
|
机器学习/深度学习 缓存 PyTorch
131_推理加速:ONNX与TensorRT深度技术解析与LLM模型转换优化实践
在大语言模型(LLM)时代,高效的推理加速已成为部署高性能AI应用的关键挑战。随着模型规模的不断扩大(从BERT的数亿参数到GPT-4的数千亿参数),推理过程的计算成本和延迟问题日益突出。ONNX(开放神经网络交换格式)和TensorRT作为业界领先的推理优化框架,为LLM的高效部署提供了强大的技术支持。本文将深入探讨LLM推理加速的核心原理,详细讲解PyTorch模型转换为ONNX和TensorRT的完整流程,并结合2025年最新优化技术,提供可落地的代码实现与性能调优方案。
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
|
3月前
|
数据采集 机器学习/深度学习 自然语言处理
98_数据增强:提升LLM微调效果的关键技术
在大语言模型(LLM)的微调过程中,数据质量与数量往往是决定最终性能的关键因素。然而,获取高质量、多样化且标注准确的训练数据却常常面临诸多挑战:数据标注成本高昂、领域特定数据稀缺、数据分布不均等问题都会直接影响微调效果。在这种背景下,数据增强技术作为一种能够有效扩充训练数据并提升其多样性的方法,正发挥着越来越重要的作用。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
|
6月前
|
机器学习/深度学习 人工智能 编解码
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型