【大模型】使用哪些资源来了解 LLM 的最新进展?

简介: 【5月更文挑战第9天】【大模型】使用哪些资源来了解 LLM 的最新进展?

image.png

资源介绍

学术期刊和会议

学术期刊和会议是了解LLM最新进展的重要资源之一。在人工智能领域,有许多权威的期刊和会议,如《自然语言处理》(Natural Language Processing)、《计算机视觉》(Computer Vision)、《人工智能》(Artificial Intelligence)等。这些期刊和会议定期发布关于LLM的最新研究成果和技术进展,包括理论研究、技术方法、应用案例等。

预印本和技术博客

预印本和技术博客是获取LLM最新进展的另一重要途径。许多研究人员和机构会在预印本平台上发布他们的研究成果和技术进展,如arXiv、PubMed、OpenAI等。这些预印本提供了及时的、未经审稿的研究成果,可以帮助工程师了解LLM领域的最新动态。此外,一些知名的技术博客,如OpenAI的官方博客、DeepMind的官方博客等,也会定期发布关于LLM的技术文章和案例分享。

学术论坛和社区

学术论坛和社区是交流和讨论LLM最新进展的重要平台之一。在互联网上有许多活跃的学术论坛和社区,如Reddit的机器学习专栏、Stack Exchange的人工智能专栏、GitHub的人工智能项目库等。这些论坛和社区汇集了全球范围内的研究人员、工程师和爱好者,可以通过在这些平台上参与讨论和交流,及时了解LLM领域的最新进展和热点话题。

学术搜索引擎

学术搜索引擎是查找LLM相关文献和资源的重要工具之一。常用的学术搜索引擎包括Google Scholar、Microsoft Academic、Semantic Scholar等。这些搜索引擎可以帮助工程师快速找到与LLM相关的学术论文、技术报告、专利文献等,提供了丰富的文献资源和检索工具,方便工程师进行深入的研究和分析。

社交媒体和订阅服务

社交媒体和订阅服务也是获取LLM最新进展的重要途径之一。许多研究人员、学术机构和技术公司都会在社交媒体上发布他们的研究成果和技术动态,如Twitter、LinkedIn、Facebook等。此外,一些专业的订阅服务,如Medium的人工智能专栏、Substack的技术博客、Newsletter的订阅服务等,也可以帮助工程师及时了解LLM领域的最新进展和观点。

结语

通过以上介绍的资源,工程师可以及时了解LLM领域的最新进展,从理论研究到实际应用,从基础算法到前沿技术,从学术论文到技术博客,各种类型的资源都能够帮助工程师深入了解LLM的发展动态和技术趋势,为自己的研究和工作提供有益的参考和指导。

相关文章
|
5月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
1304 2
|
1月前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
1542 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
5月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
147 2
|
5月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
11天前
|
物联网
LLM破局泛化诊断难题,MSSP刊登北航PHM实验室健康管理大模型交叉研究
北航PHM实验室提出了一种基于大型语言模型(LLM)的轴承故障诊断框架,结合传统诊断技术,解决了跨条件适应性、小样本学习和跨数据集泛化等问题。该框架通过信号特征量化方法提取振动数据的语义信息,并采用LoRA和QLoRA微调预训练模型,显著提升了诊断模型的泛化能力。实验结果显示,在跨数据集训练中,模型准确性提升了约10%,相关成果发表于《Mechanical Systems and Signal Processing》期刊。尽管存在计算资源需求高等挑战,该研究为旋转机械的高效维护提供了新思路。
26 2
|
2月前
|
自然语言处理
Nature:人类亲吻难题彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具
近期,《自然》杂志发表的研究显示,所有大型语言模型(LLM)在解释特定情境下人类亲吻行为时均失败。尽管LLM在语言处理和文本生成上表现出色,但在理解和推理复杂人类行为方面存在显著限制,表明其缺乏对人类情感、社会及文化背景的深入理解。专家认为LLM更像是工具而非智能体,虽在客户服务、内容创作等领域有价值,但在复杂推理和理解方面仍显不足。
94 37
|
2月前
|
Linux Docker 异构计算
基于Dify +Ollama+ Qwen2 完成本地 LLM 大模型应用实战
尼恩,一位拥有40年经验的老架构师,通过其丰富的行业经验和深入的技术研究,为读者提供了一套系统化、全面化的LLM大模型学习圣经。这套学习资料不仅帮助许多从业者成功转型,还助力多位工程师获得了高薪工作机会。
|
2月前
|
人工智能 API Android开发
LLM大模型最新消息2025.01
本文介绍了多个大模型训练和部署工具及教程。使用unsloth支持llama3,显存占用约8G;GPT4ALL加载训练好的大模型;llama.cpp进行4bit量化后可用CPU运行。MAID手机App和MLC软件可在安卓设备上本地运行大模型或调用API。FASTGPT用于客制化大模型和AI私有化客服。相关教程链接已提供。
169 12
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深挖大模型幻觉!哈佛大学最新报告:LLM等价于众包,只是在输出网络共识
大型语言模型(LLM)如ChatGPT正改变人机交互,但在生成看似真实的错误信息方面存在“幻觉”问题。这种现象源于LLM依赖统计概率而非语义理解,导致在处理争议或冷门话题时易出错。研究显示,LLM的准确性高度依赖于训练数据的质量和数量。尽管如此,LLM仍具巨大潜力,需持续优化并保持批判性使用。
93 12
|
4月前
|
人工智能 自然语言处理
大模型在装傻!谷歌苹果最新发现:LLM知道但不告诉你,掌握知识比表现出来的多
在AI领域,大模型(LLM)展现出了惊人的进步,但在谷歌和苹果的最新研究中,发现这些模型有时会故意“装傻”,即使已知正确答案也不告知用户。这种“隐藏智慧”现象揭示了大模型可能具备超出表面表现的深层能力,对AI评估与应用提出了新挑战,同时也带来了设计更高效模型的新机遇。论文链接:https://arxiv.org/pdf/2410.02707
79 11

热门文章

最新文章