使用Accelerate库在多GPU上进行LLM推理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 大型语言模型(llm)已经彻底改变了自然语言处理领域。随着这些模型在规模和复杂性上的增长,推理的计算需求也显著增加。为了应对这一挑战利用多个gpu变得至关重要。

所以本文将在多个gpu上并行执行推理,主要包括:Accelerate库介绍,简单的方法与工作代码示例和使用多个gpu的性能基准测试。

本文将使用多个3090将llama2-7b的推理扩展在多个GPU上

基本示例

我们首先介绍一个简单的示例来演示使用Accelerate进行多gpu“消息传递”。

 from accelerate import Accelerator
 from accelerate.utils import gather_object

 accelerator = Accelerator()

 # each GPU creates a string
 message=[ f"Hello this is GPU {accelerator.process_index}" ] 

 # collect the messages from all GPUs
 messages=gather_object(message)

 # output the messages only on the main process with accelerator.print() 
 accelerator.print(messages)

输出如下:

 ['Hello this is GPU 0', 
   'Hello this is GPU 1', 
   'Hello this is GPU 2', 
   'Hello this is GPU 3', 
   'Hello this is GPU 4']

多GPU推理

下面是一个简单的、非批处理的推理方法。代码很简单,因为Accelerate库已经帮我们做了很多工作,我们直接使用就可以:

 from accelerate import Accelerator
 from accelerate.utils import gather_object
 from transformers import AutoModelForCausalLM, AutoTokenizer
 from statistics import mean
 import torch, time, json

 accelerator = Accelerator()

 # 10*10 Prompts. Source: https://www.penguin.co.uk/articles/2022/04/best-first-lines-in-books
 prompts_all=[
     "The King is dead. Long live the Queen.",
     "Once there were four children whose names were Peter, Susan, Edmund, and Lucy.",
     "The story so far: in the beginning, the universe was created.",
     "It was a bright cold day in April, and the clocks were striking thirteen.",
     "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.",
     "The sweat wis lashing oafay Sick Boy; he wis trembling.",
     "124 was spiteful. Full of Baby's venom.",
     "As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect.",
     "I write this sitting in the kitchen sink.",
     "We were somewhere around Barstow on the edge of the desert when the drugs began to take hold.",
 ] * 10

 # load a base model and tokenizer
 model_path="models/llama2-7b"
 model = AutoModelForCausalLM.from_pretrained(
     model_path,    
     device_map={"": accelerator.process_index},
     torch_dtype=torch.bfloat16,
 )
 tokenizer = AutoTokenizer.from_pretrained(model_path)   

 # sync GPUs and start the timer
 accelerator.wait_for_everyone()
 start=time.time()

 # divide the prompt list onto the available GPUs 
 with accelerator.split_between_processes(prompts_all) as prompts:
     # store output of generations in dict
     results=dict(outputs=[], num_tokens=0)

     # have each GPU do inference, prompt by prompt
     for prompt in prompts:
         prompt_tokenized=tokenizer(prompt, return_tensors="pt").to("cuda")
         output_tokenized = model.generate(**prompt_tokenized, max_new_tokens=100)[0]

         # remove prompt from output 
         output_tokenized=output_tokenized[len(prompt_tokenized["input_ids"][0]):]

         # store outputs and number of tokens in result{}
         results["outputs"].append( tokenizer.decode(output_tokenized) )
         results["num_tokens"] += len(output_tokenized)

     results=[ results ] # transform to list, otherwise gather_object() will not collect correctly

 # collect results from all the GPUs
 results_gathered=gather_object(results)

 if accelerator.is_main_process:
     timediff=time.time()-start
     num_tokens=sum([r["num_tokens"] for r in results_gathered ])

     print(f"tokens/sec: {num_tokens//timediff}, time {timediff}, total tokens {num_tokens}, total prompts {len(prompts_all)}")

使用多个gpu会导致一些通信开销:性能在4个gpu时呈线性增长,然后在这种特定设置中趋于稳定。当然这里的性能取决于许多参数,如模型大小和量化、提示长度、生成的令牌数量和采样策略,所以我们只讨论一般的情况

1 GPU: 44个token /秒,时间:225.5s

2 gpu: 88个token /秒,时间:112.9s

3 gpu: 128个token /秒,时间:77.6s

4 gpu: 137个token /秒,时间:72.7s

5 gpu: 119个token /秒,时间:83.8s

在多GPU上进行批处理

现实世界中,我们可以使用批处理推理来加快速度。这会减少GPU之间的通讯,加快推理速度。我们只需要增加prepare_prompts函数将一批数据而不是单条数据输入到模型即可:

 from accelerate import Accelerator
 from accelerate.utils import gather_object
 from transformers import AutoModelForCausalLM, AutoTokenizer
 from statistics import mean
 import torch, time, json

 accelerator = Accelerator()

 def write_pretty_json(file_path, data):
     import json
     with open(file_path, "w") as write_file:
         json.dump(data, write_file, indent=4)

 # 10*10 Prompts. Source: https://www.penguin.co.uk/articles/2022/04/best-first-lines-in-books
 prompts_all=[
     "The King is dead. Long live the Queen.",
     "Once there were four children whose names were Peter, Susan, Edmund, and Lucy.",
     "The story so far: in the beginning, the universe was created.",
     "It was a bright cold day in April, and the clocks were striking thirteen.",
     "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.",
     "The sweat wis lashing oafay Sick Boy; he wis trembling.",
     "124 was spiteful. Full of Baby's venom.",
     "As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect.",
     "I write this sitting in the kitchen sink.",
     "We were somewhere around Barstow on the edge of the desert when the drugs began to take hold.",
 ] * 10

 # load a base model and tokenizer
 model_path="models/llama2-7b"
 model = AutoModelForCausalLM.from_pretrained(
     model_path,    
     device_map={"": accelerator.process_index},
     torch_dtype=torch.bfloat16,
 )
 tokenizer = AutoTokenizer.from_pretrained(model_path)   
 tokenizer.pad_token = tokenizer.eos_token

 # batch, left pad (for inference), and tokenize
 def prepare_prompts(prompts, tokenizer, batch_size=16):
     batches=[prompts[i:i + batch_size] for i in range(0, len(prompts), batch_size)]  
     batches_tok=[]
     tokenizer.padding_side="left"     
     for prompt_batch in batches:
         batches_tok.append(
             tokenizer(
                 prompt_batch, 
                 return_tensors="pt", 
                 padding='longest', 
                 truncation=False, 
                 pad_to_multiple_of=8,
                 add_special_tokens=False).to("cuda") 
             )
     tokenizer.padding_side="right"
     return batches_tok

 # sync GPUs and start the timer
 accelerator.wait_for_everyone()    
 start=time.time()

 # divide the prompt list onto the available GPUs 
 with accelerator.split_between_processes(prompts_all) as prompts:
     results=dict(outputs=[], num_tokens=0)

     # have each GPU do inference in batches
     prompt_batches=prepare_prompts(prompts, tokenizer, batch_size=16)

     for prompts_tokenized in prompt_batches:
         outputs_tokenized=model.generate(**prompts_tokenized, max_new_tokens=100)

         # remove prompt from gen. tokens
         outputs_tokenized=[ tok_out[len(tok_in):] 
             for tok_in, tok_out in zip(prompts_tokenized["input_ids"], outputs_tokenized) ] 

         # count and decode gen. tokens 
         num_tokens=sum([ len(t) for t in outputs_tokenized ])
         outputs=tokenizer.batch_decode(outputs_tokenized)

         # store in results{} to be gathered by accelerate
         results["outputs"].extend(outputs)
         results["num_tokens"] += num_tokens

     results=[ results ] # transform to list, otherwise gather_object() will not collect correctly

 # collect results from all the GPUs
 results_gathered=gather_object(results)

 if accelerator.is_main_process:
     timediff=time.time()-start
     num_tokens=sum([r["num_tokens"] for r in results_gathered ])

     print(f"tokens/sec: {num_tokens//timediff}, time elapsed: {timediff}, num_tokens {num_tokens}")

可以看到批处理会大大加快速度。

1 GPU: 520 token /sec,时间:19.2s

2 gpu: 900 token /sec,时间:11.1s

3 gpu: 1205个token /秒,时间:8.2s

4 gpu: 1655 token /sec,时间:6.0s

5 gpu: 1658 token /sec,时间:6.0s

总结

截止到本文为止,llama.cpp,ctransformer还不支持多GPU推理,好像llama.cpp在6月有个多GPU的merge,但是我没看到官方更新,所以这里暂时确定不支持多GPU。如果有小伙伴确认可以支持多GPU请留言。

huggingface的Accelerate包则为我们使用多GPU提供了一个很方便的选择,使用多个GPU推理可以显着提高性能,但gpu之间通信的开销随着gpu数量的增加而显著增加。

https://avoid.overfit.cn/post/8210f640cae0404a88fd1c9028c6aabb

作者:Geronimo

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 测试技术
CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用
【10月更文挑战第17天】链式思维(CoT)曾被认为是大型语言模型(LLM)激发推理能力的关键方法,但最新研究显示,CoT仅在数学和符号推理任务中有效,其他任务中效果不明显。加州大学伯克利分校、斯坦福大学和卡内基梅隆大学的联合研究打破了CoT作为LLM标配的神话,为重新评估LLM的推理能力提供了新视角。
49 1
|
20天前
|
机器学习/深度学习 存储 缓存
ORCA:基于持续批处理的LLM推理性能优化技术详解
大语言模型(LLMs)的批处理优化面临诸多挑战,尤其是由于推理过程的迭代性导致的资源利用不均问题。ORCA系统通过引入迭代级调度和选择性批处理技术,有效解决了这些问题,大幅提高了GPU资源利用率和系统吞吐量,相比FasterTransformer实现了最高37倍的性能提升。
90 26
|
23天前
|
缓存 算法 关系型数据库
MIT韩松团队长上下文LLM推理高效框架DuoAttention:单GPU实现330万Token上下文推理
麻省理工学院韩松团队提出DuoAttention框架,旨在提高大型语言模型(LLM)处理长上下文的效率。该框架通过区分检索头和流式头,仅对检索头应用全键值缓存,减少内存消耗和计算时间,同时保持模型长上下文处理能力。实验结果显示,DuoAttention在多种模型架构上显著提升了推理效率,为LLM的实际应用提供了新可能。
51 14
|
27天前
|
自然语言处理 算法
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
51 12
|
22天前
|
缓存 自然语言处理 API
Ascend推理组件MindIE LLM
MindIE LLM是基于昇腾硬件的大语言模型推理组件,提供高性能的多并发请求调度与优化技术,如Continuous Batching、PageAttention等,支持Python和C++ API,适用于高效能推理需求。其架构包括深度定制优化的模型模块、文本生成器和任务调度管理器,支持多种模型框架和量化方式,旨在提升大规模语言模型的推理效率和性能。
|
26天前
|
自然语言处理 资源调度 并行计算
从本地部署到企业级服务:十种主流LLM推理框架的技术介绍与对比
本文深入探讨了十种主流的大语言模型(LLM)服务引擎和工具,涵盖从轻量级本地部署到高性能企业级解决方案,详细分析了它们的技术特点、优势及局限性,旨在为研究人员和工程团队提供适合不同应用场景的技术方案。内容涉及WebLLM、LM Studio、Ollama、vLLM、LightLLM、OpenLLM、HuggingFace TGI、GPT4ALL、llama.cpp及Triton Inference Server与TensorRT-LLM等。
119 7
|
3天前
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
28天前
|
人工智能 自然语言处理 测试技术
苹果一篇论文得罪大模型圈?Transformer不会推理,只是高级模式匹配器!所有LLM都判死刑
苹果公司发布论文《GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models》,质疑大型语言模型(LLM)在数学推理方面的能力。尽管LLM在GSM8K等测试中表现良好,但在新基准测试GSM-Symbolic中,其准确率随数值变化而显著下降,表明LLM可能依赖于记忆和模式匹配而非真正的数学理解。这一发现引发了AI领域的广泛讨论。
38 5
|
1月前
|
人工智能 自然语言处理
重要的事情说两遍!Prompt复读机,显著提高LLM推理能力
【10月更文挑战第30天】本文介绍了一种名为“问题重读”(Question Re-reading)的提示策略,旨在提高大型语言模型(LLMs)的推理能力。该策略受人类学习和问题解决过程的启发,通过重新审视输入提示中的问题信息,使LLMs能够提取更深层次的见解、识别复杂模式,并建立更细致的联系。实验结果显示,问题重读策略在多个推理任务上显著提升了模型性能。
62 2
|
1月前
|
JSON 人工智能 算法
探索LLM推理全阶段的JSON格式输出限制方法
文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
197 12