基于ACK One注册集群实现IDC中K8s集群添加云上CPU/GPU节点

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 基于ACK One注册集群实现IDC中K8s集群添加云上CPU/GPU节点

在前一篇文章《基于ACK One注册集群轻松实现云上云下K8s集群统一管理》中,我们注重介绍了注册集群的应用场景,架构实现,安全加固,以及在他云K8s集群和IDC自建K8s集群中使用阿里云容器服务ACK的强大可观测性能力,实现云上云下K8s集群的统一运维管理。本文会重点介绍ACK One注册集群的另一个重要使用场景--云上弹性。

概述

ACK One注册集群的云上弹性能力针对的场景:

  1. 业务快速增长:在本地IDC中部署的K8s集群,往往受到IDC计算资源的限制无法及时扩容,计算资源的采购部署上线往往周期较长,无法承担业务流量的快速增长。
  2. 业务周期性增长或突发增长:本地IDC中的计算资源数量相对固定,无法应对业务周期性高峰,或者突发业务流量的增长。

解决以上场景的根本是计算资源弹性能力,可以跟随业务流量的变化,弹性扩大或者缩小计算资源,满足业务需求的同时也保证了成本的平衡。

通过ACK One注册集群,本地IDC中的K8s集群可以弹性扩容阿里云ECS节点池,利用阿里云容器服务的极致弹性能力,扩容应对业务流量增长,缩容实现成本节约。

尤其针对AI场景,通过ACK One注册集群,可以将云上GPU机器接入IDC中的K8s集群。

ACK One注册集群云上弹性架构图:

image.png

演示 - 阿里云GPU机器加入本地IDC中K8s集群

1. 创建ACK One注册集群

访问ACK One控制台注册集群用页面,我们已经创建了注册集群“ACKOneRegisterCluster1”并接入了本地IDC中的K8s集群。参见:《基于ACK One注册集群轻松实现云上云下K8s集群统一管理

image.png

接入后,可以通过ACK One控制台查看本地IDC K8s集群,目前只有一个master节点。

image.png


2. 创建GPU节点池并手动扩容创建1个GPU节点

在注册集群中创建节点池GPU-P100,将云上GPU机器加入IDC中K8s集群。

image.png

在IDC K8s集群中执行kubectl查看节点信息。

kubectl get node
NAME                           STATUS   ROLES    AGE     VERSION
cn-zhangjiakou.172.16.217.xx   Ready    <none>   5m35s   v1.20.9    // 云上GPU机器
iz8vb1xtnuu0ne6b58hvx0z        Ready    master   20h     v1.20.9    // IDC机器
k describe node cn-zhangjiakou.172.16.217.xx
Name:               cn-zhangjiakou.172.16.217.xx
Roles:              <none>
Labels:             aliyun.accelerator/nvidia_count=1             //nvidia labels
                    aliyun.accelerator/nvidia_mem=16280MiB        //nvidia labels 
                    aliyun.accelerator/nvidia_name=Tesla-P100-PCIE-16GB  //nvidia labels
                    beta.kubernetes.io/arch=amd64
                    beta.kubernetes.io/os=linux
                    kubernetes.io/arch=amd64
                    kubernetes.io/hostname=cn-zhangjiakou.172.16.217.xx
                    kubernetes.io/os=linux
Capacity:
  cpu:                4
  ephemeral-storage:  123722704Ki
  hugepages-1Gi:      0
  hugepages-2Mi:      0
  memory:             30568556Ki
  nvidia.com/gpu:     1              //nvidia gpu
  pods:               110
Allocatable:
  cpu:                4
  ephemeral-storage:  114022843818
  hugepages-1Gi:      0
  hugepages-2Mi:      0
  memory:             30466156Ki
  nvidia.com/gpu:     1              //nvidia gpu
  pods:               110
System Info:
  OS Image:                   Alibaba Cloud Linux (Aliyun Linux) 2.1903 LTS (Hunting Beagle)
  Operating System:           linux
  Architecture:               amd64
  Container Runtime Version:  docker://19.3.13
  Kubelet Version:            v1.20.9
  Kube-Proxy Version:         v1.20.9
......


3. 运行GPU任务测试

在IDC中K8s集群中提交GPU测试任务,运行结果成功。

> cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: gpu-pod
spec:
  restartPolicy: Never
  containers:
    - name: cuda-container
      image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/cuda10.2-vectoradd
      resources:
        limits:
          nvidia.com/gpu: 1 # requesting 1 GPU
EOF
> kubectl logs gpu-pod
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done


多级弹性调度

通过上面的演示,我们可以通过ACK One注册集群,使用云上ECS资源创建节点池,并添加到IDC集群中。您可以为节点池或者节点打标(label),并通过设置Pod的节点亲"affinity"或者“nodeSelector"的方式,为Pod选择是在IDC本地节点中运行,还是在云上ECS节点用运行。这种方式需要修改应用pod的配置,如果生产系统有较多的应用需要处理,则需要编写调度规则,适合自定义调度的场景,例如:特定CUDA版本的GPU训练任务调度到云上特定的GPU ECS实例上。

为了简化IDC中K8s集群使用云上ECS资源,ACK One注册集群提供多级弹性调度功能,通过安装ack-co-scheduler组件,您可以定义ResourcePolicy CR对象,使用多级弹性调度功能。

ResourcePolicy CR是命名空间资源,重要参数解析:

  • selector:声明ResourcePolicy作用于同一命名空间下label上打了key1=value1的Pod。
  • strategy:调度策略选择,目前只支持prefer
  • units:用户自定义的调度单元。应用扩容时,将按照units下资源的顺序选择资源运行;应用缩容时,将按照逆序进行缩容。
  • resource:弹性资源的类型,目前支持idcecseci三种类型。
  • nodeSelector:用nodelabel标识该调度单元下的节点,只对ecs资源生效。
  • max:在该组资源最多部署多少个实例。

ResourcePolicy支持以下场景:

场景1: 优先使用IDC中集群资源,再使用云上ECS资源

apiVersion: scheduling.alibabacloud.com/v1alpha1
kind: ResourcePolicy
metadata:
  name: cost-balance-policy
spec:
  selector:
    app: nginx           // 选择应用Pod
  strategy: prefer
  units:
  - resource: idc        //优先使用idc指定使用IDC中节点资源
  - resource: ecs        //当idc节点资源不足时,使用云上ECS,可以通过nodeSelector选择节点
    nodeSelector:
      alibabacloud.com/nodepool-id=np7b30xxx


场景2: 混合使用IDC资源和云上ECS资源

apiVersion: scheduling.alibabacloud.com/v1alpha1
kind: ResourcePolicy
metadata:
  name: load-balance-policy
spec:
  selector:
    app: nginx
  strategy: prefer
  units:
  - resource: idc
    max: 2             //在idc节点中最多启动2个应用实例
  - resource: ecs
    nodeSelector:
      alibabacloud.com/nodepool-id=np7b30xxx
    max: 4             //在ecs节点池中最多启动4个应用实例


总结

演示中,我们将阿里云GPU P100机器添加到IDC中的K8s集群,扩展了IDC的GPU算力。

通过ACK One注册集群:

  1. 您可以选择阿里云上的各种ECS实例类型和规格,包括:X86,ARM,GPU等。
  2. 您可以手动扩容和缩容ECS实例数量。
  3. 您可以配置ECS实例数量的自动弹性伸缩。
  4. 您可以使用多级弹性调度,优先使用IDC中资源,IDC资源不足的情况下,自动扩容云上ECS节点池处理突发业务流量。

预告

后续我们将陆续推出ACK One注册集群的系列文章,包括:Serverless方式扩容IDC中K8s集群,容灾备份,安全管理等。

参考文档

注册集群概述:https://help.aliyun.com/document_detail/155208.html

创建ECS节点池:https://help.aliyun.com/document_detail/208054.html

配置ECS节点自动弹性伸缩:https://help.aliyun.com/document_detail/208055.html

多级弹性调度:https://help.aliyun.com/document_detail/446694.html

联系我们

钉钉群号:35688562

二维码:

image.png

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
1月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
74 9
|
1月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
本文介绍如何利用阿里云的分布式云容器平台ACK One的多集群应用分发功能,结合云效CD能力,快速将单集群CD系统升级为多集群CD系统。通过增加分发策略(PropagationPolicy)和差异化策略(OverridePolicy),并修改单集群kubeconfig为舰队kubeconfig,可实现无损改造。该方案具备多地域多集群智能资源调度、重调度及故障迁移等能力,帮助用户提升业务效率与可靠性。
|
3月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
301 33
|
3月前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
168 19
|
3月前
|
Kubernetes API 网络安全
当node节点kubectl 命令无法连接到 Kubernetes API 服务器
当Node节点上的 `kubectl`无法连接到Kubernetes API服务器时,可以通过以上步骤逐步排查和解决问题。首先确保网络连接正常,验证 `kubeconfig`文件配置正确,检查API服务器和Node节点的状态,最后排除防火墙或网络策略的干扰,并通过重启服务恢复正常连接。通过这些措施,可以有效解决与Kubernetes API服务器通信的常见问题,从而保障集群的正常运行。
247 17
|
3月前
|
存储 运维 Kubernetes
容器数据保护:基于容器服务 Kubernetes 版(ACK)备份中心实现K8s存储卷一键备份与恢复
阿里云ACK备份中心提供一站式容器化业务灾备及迁移方案,减少数据丢失风险,确保业务稳定运行。
|
1月前
|
数据可视化 Linux iOS开发
Python测量CPU和内存使用率
这些示例帮助您了解如何在Python中测量CPU和内存使用率。根据需要,可以进一步完善这些示例,例如可视化结果或限制程序在特定范围内的资源占用。
92 22
|
5月前
|
存储 设计模式 监控
快速定位并优化CPU 与 JVM 内存性能瓶颈
本文介绍了 Java 应用常见的 CPU & JVM 内存热点原因及优化思路。
797 166
|
3月前
|
存储 设计模式 监控
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
|
4月前
|
人工智能 运维 监控
2025年阿里云服务器配置选择全攻略:CPU、内存、带宽与系统盘详解
在2025年,阿里云服务器以高性能、灵活扩展和稳定服务助力数字化转型,提供轻量应用服务器、通用型g8i实例等多样化配置,满足个人博客至企业级业务需求。针对不同场景(如计算密集型、内存密集型),推荐相应实例类型与带宽规划,强调成本优化策略,包括包年包月节省成本、ESSD云盘选择及地域部署建议。文中还提及安全设置、监控备份的重要性,并指出未来可关注第九代实例g9i支持的新技术。整体而言,阿里云致力于帮助用户实现性能与成本的最优平衡。 以上简介共计238个字符。

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多